Búsqueda avanzada


Área de conocimiento




181 resultados, página 9 de 10

Estimación del error en un medidor de turbina con insuficientes tramos rectos

JOSEFINA ORTIZ MEDEL FRANCISCO MARTINEZ GONZALEZ EDMUNDO PEDROZA-GONZALEZ (2005, [Artículo])

En pozos agrícolas, frecuentemente se presenta el caso de trenes de descarga con insuficientes tramos rectos para cumplir las especificaciones de instalación de medidores de flujo. Los fabricantes no conocen la variación del error de medición en que se incurre si los medidores se colocan bajo condiciones de insuficientes tramos rectos. Para conocer el desempeño de un medidor de turbina con poco tramo recto, tanto aguas arriba como aguas abajo (condiciones no consideradas por Hanson) se realizaron pruebas en el Laboratorio de Hidráulica de la Universidad de Guanajuato. Se compararon las lecturas del medidor contra las de un tanque volumétrico, colocando el medidor en diferentes posiciones y con varios gastos. Los resultados indican que el medidor probado no tiene grandes errores cuando está mal colocado, pero si presenta su mejor comportamiento cuando se coloca como lo indica el fabricante.

Pozos agrícolas Flujo de agua Mediciones hidráulicas Medidores INGENIERÍA Y TECNOLOGÍA

Estimación hídrica teórica de plantas en zonas urbanas: estudio de caso "Vertical Farm"

Jorge Flores Velazquez JUAN MANUEL ANGELES HERNANDEZ (2018, [Ítem publicado en memoria de congreso])

La gestión integrada de recursos hídricos es un proceso que promueve la gestión y el desarrollo coordinados del agua, el suelo” y demás recursos para potenciar su uso “sin comprometer la sostenibilidad de los ecosistemas vitales”. En la zona metropolitana de la ciudad de México habitan más de 22 millones de una población apostada en aproximadamente 8000 km2, lo que implica una densidad de habitantes de las más altas del mundo que ha ido absorbiendo la zona rural por la urbana. Frente a ello, se han puesto en marcha tecnologías disruptivas con el fin de atender la transformación del sector. Pero, además, implica gestión del recurso mediante tratamiento de aguas residuales, reciclaje del agua, cosecha de lluvia y de gestión de la demanda. En este trabajo se expone la viabilidad en la implantación de estas tecnologías, sus ventajas y requerimientos desde el punto de vista hídrico.

Agricultura urbana Riego Áreas verdes Gestión integrada de recursos hídricos INGENIERÍA Y TECNOLOGÍA

Women, economic resilience, gender norms in a time of climate change: what do we know?

Cathy Farnworth Anne Rietveld Rachel Voss Angela Meentzen (2023, [Artículo])

This literature delves into 82 research articles, published between 2016 and 2022, to develop a deep understanding of how women manage their lives and livelihoods within their agrifood systems when these systems are being affected, sometimes devastatingly, by climate change. The Findings show that four core gender norms affect the ability of women to achieve economic resilience in the face of climate change operate in agrifood production systems. Each of these gender norms speaks to male privilege: (i) Men are primary decision-makers, (ii) Men are breadwinners, (iii) Men control assets, and (iv) Men are food system actors. These gender norms are widely held and challenge women’s abilities to become economically resilient. These norms are made more powerful still because they fuse with each other and act on multiple levels, and they serve to support other norms which limit women’s scope to act. It is particularly noteworthy that many institutional actors, ranging from community decision-makers to development partners, tend to reinforce rather than challenge gender norms because they do not critically review their own assumptions.

However, the four gender norms cited are not hegemonic. First, there is limited and intriguing evidence that intersectional identities can influence women’s resilience in significant ways. Second, gender norms governing women’s roles and power in agrifood systems are changing in response to climate change and other forces, with implications for how women respond to future climate shocks. Third, paying attention to local realities is important – behaviours do not necessarily substantiate local norms. Fourth, women experience strong support from other women in savings groups, religious organisations, reciprocal labour, and others. Fifth, critical moments, such as climate disasters, offer potentially pivotal moments of change which could permit women unusually high levels of agency to overcome restrictive gender norms without being negatively sanctioned. The article concludes with recommendations for further research.

Economic Resilience Intersectional Identities Women Groups Support CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ECONOMICS RESILIENCE CLIMATE CHANGE GENDER NORMS AGRIFOOD SYSTEMS WOMEN

Bundling subsurface drip irrigation with no-till provides a window to integrate mung bean with intensive cereal systems for improving resource use efficiency

Manish Kakraliya madhu choudhary Mahesh Gathala Parbodh Chander Sharma ML JAT (2024, [Artículo])

The future of South Asia’s major production system (rice–wheat rotation) is at stake due to continuously aggravating pressure on groundwater aquifers and other natural resources which will further intensify with climate change. Traditional practices, conventional tillage (CT) residue burning, and indiscriminate use of groundwater with flood irrigation are the major drivers of the non-sustainability of rice–wheat (RW) system in northwest (NW) India. For designing sustainable practices in intensive cereal systems, we conducted a study on bundled practices (zero tillage, residue mulch, precise irrigation, and mung bean integration) based on multi-indicator (system productivity, profitability, and efficiency of water, nitrogen, and energy) analysis in RW system. The study showed that bundling conservation agriculture (CA) practices with subsurface drip irrigation (SDI) saved ~70 and 45% (3-year mean) of irrigation water in rice and wheat, respectively, compared to farmers’ practice/CT practice (pooled data of Sc1 and Sc2; 1,035 and 318 mm ha−1). On a 3-year system basis, CA with SDI scenarios (mean of Sc5–Sc8) saved 35.4% irrigation water under RW systems compared to their respective CA with flood irrigation (FI) scenarios (mean of Sc3 and Sc4) during the investigation irrespective of residue management. CA with FI system increased the water productivity (WPi) and its use efficiency (WUE) by ~52 and 12.3% (3-year mean), whereas SDI improved by 221.2 and 39.2% compared to farmers practice (Sc1; 0.69 kg grain m−3 and 21.39 kg grain ha−1 cm−1), respectively. Based on the 3-year mean, CA with SDI (mean of Sc5–Sc8) recorded −2.5% rice yield, whereas wheat yield was +25% compared to farmers practice (Sc1; 5.44 and 3.79 Mg ha−1) and rice and wheat yield under CA with flood irrigation were increased by +7 and + 11%, compared to their respective CT practices. Mung bean integration in Sc7 and Sc8 contributed to ~26% in crop productivity and profitability compared to farmers’ practice (Sc1) as SDI facilitated advancing the sowing time by 1 week. On a system basis, CA with SDI improved energy use efficiency (EUE) by ~70% and partial factor productivity of N by 18.4% compared to CT practices. In the RW system of NW India, CA with SDI for precise water and N management proved to be a profitable solution to address the problems of groundwater, residue burning, sustainable intensification, and input (water and energy) use with the potential for replication in large areas in NW India.

Direct Seeded Rice Subsurface Drip Irrigation Economic Profitability Energy and Nitrogen Efficiency CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CONSERVATION AGRICULTURE RICE SUBSURFACE IRRIGATION IRRIGATION SYSTEMS WATER PRODUCTIVITY ECONOMIC VIABILITY ENERGY EFFICIENCY NITROGEN-USE EFFICIENCY

Sustainable maize intensification through site-specific nutrient management advice: Experimental evidence from Nigeria

Miet Maertens Oyakhilomen Oyinbo Tahirou Abdoulaye Jordan Chamberlin (2023, [Artículo])

There is growing evidence on the impacts of site-specific nutrient management (SSNM) from Asia. The evidence for Sub-Saharan Africa (SSA), where SSNM developments are more recent and where conditions concerning soil fertility and fertilizer use differ importantly from those in Asia, is extremely scarce. We evaluate a SSNM advisory tool that allows extension agents to generate fertilizer recommendations tailored to the specific situation of an individual farmer’s field, using a three-year randomized controlled trial with 792 smallholder farmers in the maize belt of northern Nigeria. Two treatment arms were implemented: T1 and T2 both provide SSNM information on nutrient use and management, but T2 provides additional information on maize price distributions and the associated variability of expected returns to fertilizer use. We estimate average and heterogenous intent-to-treat effects on agronomic, economic and environmental plot-level outcomes. We find that T1 and T2 lead to substantial increases (up to 116%) in the adoption of good fertilizer management practices and T2 leads to incremental increases (up to 18%) in nutrient application rates, yields and revenues. Both treatments improve low levels of nutrient use efficiency and reduce high levels of greenhouse gas emission intensity, after two years of treatment. Our findings underscore the possibility of a more gradual and sustainable intensification of smallholder agriculture in SSA, as compared with the Asian Green Revolution, through increased fertilizer use accompanied by improved fertilizer management.

Randomized Controlled Trial CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA TECHNOLOGY ADOPTION AGRICULTURAL EXTENSION GREEN REVOLUTION FERTILIZERS GREENHOUSE GAS EMISSIONS