Filtrar por:
Tipo de publicación
- Artículo (10)
- Tesis de maestría (4)
- Artículo (1)
- Capítulo de libro (1)
Autores
- Bram Govaerts (2)
- Luc Dendooven (2)
- Nele Verhulst (2)
- Wenfei Tian (2)
- Yendi Navarro-Noya (2)
Años de Publicación
Editores
- CICESE (2)
- CIATEQ, A.C. (1)
- El autor (1)
- Frontiers Media, S. A. (1)
- Multidisciplinary Digital Publishing Institute (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (8)
- Repositorio Institucional CIBNOR (2)
- Repositorio Institucional CICESE (2)
- CIATEQ Digital (1)
- Repositorio Institucional de Acceso Abierto de la Universidad Autónoma del Estado de Morelos (1)
Tipos de Acceso
- oa:openAccess (15)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (9)
- OTRAS (6)
- MAIZE (4)
- WHEAT (4)
- BIOLOGÍA Y QUÍMICA (3)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Luis Ricardo Uribe Dávila (2023, [Tesis de maestría])
Vivimos la industria 4.0, misma que no es nueva, ya que sus orígenes se remontan a finales de la década de los 2000, en Alemania. Un pilar de la industria 4.0 es el análisis de datos, conocido como Big Data. El conocer los datos de un proceso, de un estudio, ayuda en gran medida a predecir el comportamiento que tendrá el proceso o la máquina a estudiar en un periodo a corto o mediano plazo. En el presente proyecto se analizan los datos arrojados por un motor eléctrico de corriente alterna, del tipo inducción, jaula de ardilla. El motor está diseñado para trabajar de manera continua, sin embargo, el uso que se le da, es meramente educativo; es decir, no sobre pasa las 15 horas por semana de uso. Mediante la toma de datos de las tres fases de corriente RMS o corriente de valor eficaz que posee el motor eléctrico que se realizará con el microcontrolador Arduino UNO, se analizarán los mismos mediante el software de cómputo numérico MATLAB, ordenando los datos, descartando valores que no aporten información relevante para lograr la predicción de datos. Por último, se llevará a conocer este proyecto a la carrera mecatrónica, área sistemas de manufactura flexible y área automatización, con el fin de que puedan observar de una mejor manera la aplicación y funcionamiento de uno de los pilares de la actual industria 4.0.
We live in industry 4.0, which is not new, since its origins date back to the late 2000s, in Germany. One pillar of industry 4.0 is data analysis, known as Big Data. Knowing the data of a process, of a study, helps greatly to predict the behavior that the process or machine will have to study in a short- or medium-term period. This project analyzes the data released by an electric motor of alternating current, of the type induction, squirrel cage. The engine is designed to work continuously, however, the use given to it is merely educational, that is; only not over spends 15 hours per week of use. By taking data from the three phases of RMS current or effective value current of the electric motor that will be made with the Arduino UNO micro controller, they will be analyzed using MATLAB numerical computing software, ordering the data, discarding values that do not provide relevant information to achieve data prediction. Finally, this project will be presented to the mechatronics career, flexible manufacturing systems area and automation area, so that they can observe in a better way the application and operation of one of the pillars of the current industry 4.0.
Mantenimiento predictivo Regresión lineal Industria 4.0 Big data Corriente RMS Predictive maintenance Linear regression Industry 4.0 Big data RMS Current INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS OTRAS ESPECIALIDADES TECNOLÓGICAS OTRAS OTRAS
Accumulation of wheat phenolic acids under different nitrogen rates and growing environments
Wenfei Tian Yong Zhang Zhonghu He (2022, [Artículo])
Functional Wheat Trans-Ferulic Acid Nitrogen Management Environment Interaction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT PHENOLIC ACIDS NITROGEN ENVIRONMENT ANTIOXIDANTS
Yendi Navarro-Noya Bram Govaerts Nele Verhulst Luc Dendooven (2022, [Artículo])
Farmers in Mexico till soil intensively, remove crop residues for fodder and grow maize often in monoculture. Conservation agriculture (CA), including minimal tillage, crop residue retention and crop diversification, is proposed as a more sustainable alternative. In this study, we determined the effect of agricultural practices and the developing maize rhizosphere on soil bacterial communities. Bulk and maize (Zea mays L.) rhizosphere soil under conventional practices (CP) and CA were sampled during the vegetative, flowering and grain filling stage, and 16S rRNA metabarcoding was used to assess bacterial diversity and community structure. The functional diversity was inferred from the bacterial taxa using PICRUSt. Conservation agriculture positively affected taxonomic and functional diversity compared to CP. The agricultural practice was the most important factor in defining the structure of bacterial communities, even more so than rhizosphere and plant growth stage. The rhizosphere enriched fast growing copiotrophic bacteria, such as Rhizobiales, Sphingomonadales, Xanthomonadales, and Burkholderiales, while in the bulk soil of CP other copiotrophs were enriched, e.g., Halomonas and Bacillus. The bacterial community in the maize bulk soil resembled each other more than in the rhizosphere of CA and CP. The bacterial community structure, and taxonomic and functional diversity in the maize rhizosphere changed with maize development and the differences between the bulk soil and the rhizosphere were more accentuated when the plant aged. Although agricultural practices did not alter the effect of the rhizosphere on the soil bacterial communities in the flowering and grain filling stage, they did in the vegetative stage.
Community Assembly Functional Diversity Intensive Agricultural Practices Plant Microbiome CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SUSTAINABLE AGRICULTURE TILLAGE SOIL BACTERIA MAIZE
Natural disasters and economic growth: a synthesis of empirical evidence
Fernando Antonio Ignacio González (2023, [Artículo, Artículo])
Natural disasters pose a serious threat globally and, in the future, their frequency and severity are expected to increase due to climate change. Empirical evidence has reported conflicting results in terms of the impact of disasters on economic growth. In this context, the present work seeks to synthesize the recent empirical evidence related to this topic. More than 650 estimates, from studies published in the last five years (2015-2020), are used. Meta-analysis and meta-regression techniques are employed. The review includes three sources (Scopus, Science Direct, and Google Scholar). The results identified the existence of a negative and significant combined effect (-0.015). Developing countries are especially vulnerable to disasters. The negative impact is greater for disasters that occurred in the last decade -in relation to previous disasters-. These findings constitute a call for attention in favor of mitigation and adaptation policies.
Disasters GDP meta-analysis meta-regression desastres crecimiento PIB meta-análisis meta-regresión CIENCIAS SOCIALES CIENCIAS SOCIALES
Wenfei Tian Maria Itria Ibba Govindan Velu Shuanghe Cao Zhonghu He (2024, [Artículo])
CIMMYT Germplasm CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GERMPLASM FERULIC ACID FUNCTIONAL FOODS PHYTOCHEMICALS YIELD POTENTIAL WHEAT FOOD PRODUCTION
Chapter 9. Genome-informed discovery of genes and framework of functional genes in wheat
awais rasheed Rudi Appels (2024, [Capítulo de libro])
Wheat Genomics KASP Markers Gene Discovery Functional Markers Gene Networks CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT GENOMICS SINGLE NUCLEOTIDE POLYMORPHISMS FUNCTIONAL GENOMICS
Alejandra Miranda Carrazco Yendi Navarro-Noya Bram Govaerts Nele Verhulst Luc Dendooven (2022, [Artículo])
Plant-associated microorganisms that affect plant development, their composition, and their functionality are determined by the host, soil conditions, and agricultural practices. How agricultural practices affect the rhizosphere microbiome has been well studied, but less is known about how they might affect plant endophytes. In this study, the metagenomic DNA from the rhizosphere and endophyte communities of root and stem of maize plants was extracted and sequenced with the “diversity arrays technology sequencing,” while the bacterial community and functionality (organized by subsystems from general to specific functions) were investigated in crops cultivated with or without tillage and with or without N fertilizer application. Tillage had a small significant effect on the bacterial community in the rhizosphere, but N fertilizer had a highly significant effect on the roots, but not on the rhizosphere or stem. The relative abundance of many bacterial species was significantly different in the roots and stem of fertilized maize plants, but not in the unfertilized ones. The abundance of N cycle genes was affected by N fertilization application, most accentuated in the roots. How these changes in bacterial composition and N genes composition might affect plant development or crop yields has still to be unraveled.
Bacterial Community Structure DArT-Seq Bacterial Community Functionality Genes Involved in N Cycling CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURAL PRACTICES MAIZE RHIZOSPHERE STEMS NITROGEN FERTILIZERS
Digital artifacts reveal development and diffusion of climate research
Bia Carneiro Tek Sapkota (2022, [Artículo])
Accessible Knowledge Impact of Outputs Traditional Bibliometric Analyses Hyperlink Analysis CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE DIFFUSION MAIZE MINING ORGANIZATION SOCIAL MEDIA SOCIAL NETWORK ANALYSIS WHEAT TEXT MINING
Atul Kulkarni Keshab Babu Koirala Pervez Zaidi (2023, [Artículo])
Inverse Probability Weighted Regression Heat Tolerant Maize Hybrid Partial Budget CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA HEAT STRESS HEAT TOLERANCE MAIZE HYBRIDS BUDGETS YIELDS
Lovemore Chipindu Walter Mupangwa Isaiah Nyagumbo Mainassara Zaman-Allah (2023, [Artículo])
Autoregressive Integrated Moving Average Facebook Prophet Hidden Markov Model Regression Regression with Hidden Logistic Process CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA COASTAL AREAS SEMIARID ZONES SUBHUMID ZONES RAINFALL CLIMATE CHANGE