Filtrar por:
Tipo de publicación
- Artículo (22)
- Objeto de congreso (3)
- Tesis de maestría (1)
Autores
- sridhar bhavani (4)
- Susanne Dreisigacker (3)
- Alison Bentley (2)
- Carolina Sansaloni (2)
- Charles Chen (2)
Años de Publicación
Editores
- & (1)
- Atmospheric Research, New Zealand (1)
- CICESE (1)
- Centro de Investigaciones Biológicas del Noroeste, s.c. (1)
- Heather M. Patterson, Department of Agriculture and Water Resources, Australia (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (19)
- Repositorio Institucional CICESE (3)
- Repositorio Institucional CIBNOR (2)
- Repositorio IPICYT (1)
- Repositorio Institucional CICY (1)
Tipos de Acceso
- oa:openAccess (26)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (21)
- GENETIC DIVERSITY (AS RESOURCE) (8)
- DISEASE RESISTANCE (5)
- BIOLOGÍA Y QUÍMICA (4)
- CIENCIAS DE LA VIDA (4)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
madhu choudhary ML JAT Parbodh Chander Sharma (2022, [Artículo])
Fungal communities in agricultural soils are assumed to be affected by climate, weather, and anthropogenic activities, and magnitude of their effect depends on the agricultural activities. Therefore, a study was conducted to investigate the impact of the portfolio of management practices on fungal communities and soil physical–chemical properties. The study comprised different climate-smart agriculture (CSA)-based management scenarios (Sc) established on the principles of conservation agriculture (CA), namely, ScI is conventional tillage-based rice–wheat rotation, ScII is partial CA-based rice–wheat–mungbean, ScIII is partial CSA-based rice–wheat–mungbean, ScIV is partial CSA-based maize–wheat–mungbean, and ScV and ScVI are CSA-based scenarios and similar to ScIII and ScIV, respectively, except for fertigation method. All the scenarios were flood irrigated except the ScV and ScVI where water and nitrogen were given through subsurface drip irrigation. Soils of these scenarios were collected from 0 to 15 cm depth and analyzed by Illumina paired-end sequencing of Internal Transcribed Spacer regions (ITS1 and ITS2) for the study of fungal community composition. Analysis of 5 million processed sequences showed a higher Shannon diversity index of 1.47 times and a Simpson index of 1.12 times in maize-based CSA scenarios (ScIV and ScVI) compared with rice-based CSA scenarios (ScIII and ScV). Seven phyla were present in all the scenarios, where Ascomycota was the most abundant phyla and it was followed by Basidiomycota and Zygomycota. Ascomycota was found more abundant in rice-based CSA scenarios as compared to maize-based CSA scenarios. Soil organic carbon and nitrogen were found to be 1.62 and 1.25 times higher in CSA scenarios compared with other scenarios. Bulk density was found highest in farmers' practice (Sc1); however, mean weight diameter and water-stable aggregates were found lowest in ScI. Soil physical, chemical, and biological properties were found better under CSA-based practices, which also increased the wheat grain yield by 12.5% and system yield by 18.8%. These results indicate that bundling/layering of smart agricultural practices over farmers' practices has tremendous effects on soil properties, and hence play an important role in sustaining soil quality/health.
Agriculture Management Fungal Community Diversity Indices Climate-Smart Agricultural Practices CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURE TILLAGE CLIMATE-SMART AGRICULTURE SOIL ORGANIC CARBON
Ahmed Kayad Francelino Rodrigues Marco Sozzi Francesco Pirotti Francesco Marinello Urs Schulthess Bruno Gerard Marie Weiss (2022, [Artículo])
PROSAIL Vegetation Indices Field Variability Digital Farming CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA PRECISION AGRICULTURE MAIZE GRAIN YIELD BIOMASS VEGETATION VEGETATION INDEX
Mining alleles for tar spot complex resistance from CIMMYT's maize Germplasm Bank
Martha Willcox Juan Burgueño Daniel Jeffers Zakaria Kehel Rosemary Shrestha Kelly Swarts Edward Buckler Sarah Hearne Charles Chen (2022, [Artículo])
Maize Landraces Maize Genetic Resources Allelic Diversity Rare Alleles Phenotypic Characterization Tropical Maize Phyllachora maydis CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE LANDRACES GENETIC RESOURCES ALLELES FOLIAR DISEASES CLIMATE CHANGE
marwa laribi Sarrah Ben M'barek Carolina Sansaloni Susanne Dreisigacker (2023, [Artículo])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA DISEASE RESISTANCE HARD WHEAT GENETIC DIVERSITY GENOME-WIDE ASSOCIATION STUDIES LANDRACES POPULATION STRUCTURE
Lesley Boyd sridhar bhavani Cristobal Uauy Annemarie Fejer Justesen Mogens Hovmoller (2022, [Artículo])
Cereals and Grains Pathogen Diversity Puccinia f. sp. tritici Stripe Rust Yellow Rust CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CEREALS FIELD CROPS FUNGI PATHOGENICITY RUSTS TRITICUM AESTIVUM
Characterization of Mediterranean durum wheat for resistance to Pyrenophora tritici-repentis
marwa laribi Khaled Sassi Sarrah Ben M'barek (2022, [Artículo])
Tan Spot Durum Wheat Phenotypic Diversity CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SPOTS HARD WHEAT LANDRACES PHENOTYPIC VARIATION PLANT HEIGHT DISEASE RESISTANCE
Response of African sorghum genotypes for drought tolerance under variable environments
Hussein Shimelis Baloua Nébié (2023, [Artículo])
Additive Main Effect and Multiplicative Interaction Best Linear Unbiased Estimates Drought Tolerance Indices CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ABIOTIC STRESS DROUGHT TOLERANCE SORGHUM GENOTYPES
Spatial phylogenetics in Hechtioideae (Bromeliaceae) reveals recent diversification and dispersal
La filogenética espacial de Hechtioideae (Bromeliaceae) revela diversificación y dispersión reciente
Ricardo Rivera Martinez Ivón Mercedes Ramírez Morillo José Arturo de Nova Vázquez GERMAN CARNEVALI FERNANDEZ CONCHA Juan Pablo Pinzón Katya J. Romero-Soler NESTOR EDUARDO RAIGOZA FLORES (2022, [Artículo])
Background: Hechtioideae is a group of Bromeliaceae that is distributed in Megamexico III. In recent years, evolutionary relationships within this lineage have been studied; however, the biogeography of these plants have not yet been explored from a phylogenetic framework. The integration of geographic and phylogenetic information in the evolutionary study of organisms has facilitated the identification of patterns, as well as the exploration of new hypotheses that allow for the understanding the processes that have influenced the evolutionary history of lineages. Questions and/or Hypotheses: What is the biogeographic history of this lineage? How Hechtioideae has diversified over time? Results: The Neotropical region has the highest species richness of Hechtioideae and the Mexican Transition Zone is the area with the greatest phylogenetic diversity. This lineage presented its highest diversification rate during the late Miocene and Pleistocene (6.5-1 Ma). The ancestral area of the group corresponds to the Neotropical region and the Mexican Transition Zone. In addition, Hechtioideae spread across its current ranges through multiple dispersal events associated with climatic and geological events during the last 10 Ma. Conclusions: Hechtioideae is a group of recent origin whose evolutionary history has been strongly influenced by geological and climatic events over the past 10 Ma, such as the glacial and interglacial periods of the Pleistocene and the great tectonic and volcanic activity that led to the formation of the Trans-Mexican Volcanic Belt. © 2022 Sociedad Botanica de Mexico, A.C. All rights reserved.
ANCESTRAL AREA RECONSTRUCTION BIOGEOGRAPHY CONSERVATION DISTRIBUTION PHYLOGENETIC DIVERSITY BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) ECOLOGÍA VEGETAL ECOLOGÍA VEGETAL
IAN MACGREGOR FORS FEDERICO ESCOBAR SARRIA JUAN FERNANDO ESCOBAR IBAÑEZ NATALIA MESA SIERRA FREDY ALEXANDER ALVARADO ROBERTO Rafael Rueda Hernández CLAUDIA ELIZABETH MORENO ORTEGA Ina Falfán ERICK JOAQUIN CORRO MENDEZ Eduardo Octavio Pineda Arredondo Amandine Bourg JOSE LUIS AGUILAR LOPEZ (2022, [Artículo])
"β-diversity has been under continuous debate, with a current need to better understand the way in which a new wave of measures work. We assessed the results of 12 incidence-based β-diversity indices. Our results of gradual species composition overlap between paired assemblages considering progressive differences in species richness show the following: (i) four indices (β-2, β-3, β-3.s, and βr) should be used cautiously given that results with no shared species retrieve results that could be misinterpreted; (ii) all measures conceived specifically as partitioned components of species compositional dissimilarities ought to be used as such and not as independent measures per se; (iii) the non-linear response of some indices to gradual species composition overlap should be interpreted carefully, and further analysis using their results as dependent variables should be performed cautiously; and (iv) two metrics (βsim and βsor) behave predictably and linearly to gradual species composition overlap. We encourage ecologists using measures of β-diversity to fully understand their mathematical nature and type of results under the scenario to be used in order to avoid inappropriate and misleading inferences."
Beta diversity Nestedness Replacement Richness difference Species turnover BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) ECOLOGÍA VEGETAL ECOLOGÍA VEGETAL
Muhammad Massub Tehseen Fatma Aykut Tonk Ahmed Amri Carolina Sansaloni Ezgi Kurtulus Muhammad Salman Mubarik Kumarse Nazari (2022, [Artículo])
Wheat Landraces Genetic Diversity SNP Markers Analysis of Molecular Variance AMOVA CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BREEDING DISCRIMINANT ANALYSIS GENETIC VARIATION GENETIC DISTANCE GENETIC IMPROVEMENT GENETIC MARKERS HEXAPLOIDY LANDRACES POPULATION STRUCTURE SINGLE NUCLEOTIDE POLYMORPHISM TRITICUM AESTIVUM WHEAT