Filtros
Filtrar por:
Tipo de publicación
- Artículo (97)
- Objeto de congreso (22)
- Capítulo de libro (3)
- Libro (1)
- Tesis de maestría (1)
Autores
- sridhar bhavani (10)
- Govindan Velu (7)
- Alison Bentley (6)
- Ravi Singh (6)
- Bekele Abeyo (5)
Años de Publicación
Editores
- CICESE (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (123)
- Repositorio Institucional CICESE (1)
Tipos de Acceso
- oa:openAccess (124)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (123)
- WHEAT (85)
- DISEASE RESISTANCE (17)
- RUSTS (17)
- GRAIN (16)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Balancing quality with quantity: a case study of UK bread wheat
Nick Fradgley Keith Gardner Stéphanie M. Swarbreck Alison Bentley (2023, [Artículo])
Grain Protein Content Environmental Sustainability End-Use Quality Modern Bread Baking Methods CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GRAIN PROTEIN CONTENT HISTORY QUALITY WHEAT YIELDS
Vijay Gahlaut Vandana Jaiswal Pushpendra Kumar Gupta (2019, [Artículo])
Genome-Wide Association Study Marker-Trait Associations CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENETIC LINKAGE GENETICS PROCEDURES QUANTITATIVE TRAIT LOCI WHEAT CHROMOSOME MAPPING
suneel kumar UTTAM KUMAR Guriqbal Singh Dhillon Amit Singh Vinod Mishra Pradeep Kumar Bhati Saikat Das Ramesh Chand Kuldeep Singh Sundeep Kumar (2022, [Artículo])
Spot Blotch Genome-Wide Association Study Marker Trait Association KASP Markers Kompetitive Allele Specific PCR CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA TRITICUM AESTIVUM MATERIAL TRANSFER AGREEMENTS MARKER-ASSISTED SELECTION DISEASE RESISTANCE WHEAT
Ravi Singh Mandeep Randhawa sridhar bhavani UTTAM KUMAR JULIO HUERTA_ESPINO Evans Lagudah CAIXIA LAN (2022, [Artículo])
Co-Located Resistance Loci Puccinia triticina CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA RUSTS PUCCINIA STRIIFORMIS QUANTITATIVE TRAIT LOCI ADULT PLANT RESISTANCE WHEAT
Nick Fradgley Alison Bentley Keith Gardner Stéphanie M. Swarbreck (2023, [Artículo])
Sustainable Food Systems Genomic Prediction Genome-Wide Association Analysis CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT BREEDING MARKER-ASSISTED SELECTION VARIETIES FOOD SYSTEMS QUALITY
Gender analysis of household seed security : A case of maize and wheat seed systems in Nepal
Hom Nath Gartaula (2022, [Libro])
Seed Security Mountains CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SEED SYSTEMS MAIZE WHEAT ROLE OF WOMEN WOMEN'S PARTICIPATION
Tilahun Amede Elizabeth Bailey Abdul Wahab Mossa Dereje Tirfessa MESFIN KEBEDE DESTA Getachew Agegnehu Tesfaye Shiferaw Sida Stephan Haefele R. Murray Lark Martin Broadley Samuel Gameda (2023, [Artículo])
Agronomic biofortification, encompassing the use of mineral and organic nutrient resources which improve micronutrient concentrations in staple crops is a potential strategy to promote the production of and access to micronutrient-dense foods at the farm level. However, the heterogeneity of smallholder farming landscapes presents challenges on implementing agronomic biofortification. Here, we test the effects of zinc (Zn)- and selenium (Se)-containing fertilizer on micronutrient concentrations of wheat (Triticum aestivum L.) and teff (Eragrostis tef (Zucc.) Trotter) grown under different landscape positions and with different micronutrient fertilizer application methods in the western Amhara region of Ethiopia. Field experiments were established in three landscape positions at three sites, with five treatments falling into three broad categories: (1) nitrogen (N) fertilizer rate; (2) micronutrient fertilizer application method; (3) sole or co-application of Zn and Se fertilizer. Treatments were replicated across five farms per landscape position and over two cropping seasons (2018 and 2019). Grain Zn concentration ranged from 26.6 to 36.4 mg kg−1 in wheat and 28.5–31.2 mg kg−1 in teff. Grain Se concentration ranged from 0.02 to 0.59 mg kg−1 in wheat while larger concentrations of between 1.01 and 1.55 mg kg−1 were attained in teff. Larger concentrations of Zn and Se were consistently attained when a foliar fertilizer was applied. Application of ⅓ nitrogen (N) yielded significantly larger grain Se concentration in wheat compared to a recommended N application rate. A moderate landscape effect on grain Zn concentration was observed in wheat but not in teff. In contrast, strong evidence of a landscape effect was observed for wheat and teff grain Se concentration. There was no evidence for any interaction of the treatment contrasts with landscape position except in teff, where an interaction effect between landscape position and Se application was observed. Our findings indicate an effect of Zn, Se, N, landscape position, and its interaction effect with Se on grain micronutrient concentrations. Agronomic biofortification of wheat and teff with micronutrient fertilizers is influenced by landscape position, the micronutrient fertilizer application method and N fertilizer management. The complexity of smallholder environmental settings and different farmer socio-economic opportunities calls for the optimization of nutritional agronomy landscape trials. Targeted application of micronutrient fertilizers across a landscape gradient is therefore required in ongoing agronomic biofortification interventions, in addition to the micronutrient fertilizer application method and the N fertilizer management strategy.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BIOFORTIFICATION LANDSCAPE SELENIUM ZINC WHEAT
Sudhir Navathe Ramesh Chand Mir Asif Iquebal Govindan Velu arun joshi (2022, [Artículo])
Resistance Terminal Heat CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BIPOLARIS SOROKINIANA HEAT STRESS WHEAT RESISTANCE VARIETIES
Rice–wheat comparative genomics: Gains and gaps
Akila Wijerathna-Yapa Md. Harun-Or-Rashid BHOJA BASNET (2023, [Artículo])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA COMPARATIVE GENOMICS GENES GENETIC ENGINEERING BREEDING RICE WHEAT