Filtrar por:
Tipo de publicación
- Artículo (21)
- Capítulo de libro (2)
- Objeto de congreso (2)
Autores
- Jose Crossa (8)
- Osval Antonio Montesinos-Lopez (6)
- Alison Bentley (3)
- Gerald Blasch (3)
- Leonardo Abdiel Crespo Herrera (3)
Años de Publicación
Editores
- Craig R. McClain, Monterey Bay Aquarium Research Institute, United States of America (1)
- Universidad Autónoma Metropolitana (México). (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (22)
- Repositorio Institucional CICESE (1)
- Repositorio Institucional CICY (1)
- Repositorio Institucional Zaloamati (1)
Tipos de Acceso
- oa:openAccess (25)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (22)
- Genomic Prediction (13)
- WHEAT (7)
- MARKER-ASSISTED SELECTION (5)
- BREEDING (4)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
XUECAI ZHANG Yong Zhang (2022, [Artículo])
Fusarium Head Blight Resistance Fusarium verticillioides QTL Mapping Genomic Prediction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA FUSARIUM QUANTITATIVE TRAIT LOCI MAPPING TRITICUM AESTIVUM
Roberto Fritsche-Neto Marlee Labroo (2024, [Artículo])
Genomic Prediction Reciprocal Recurrent Selection Heterotic Pools CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA STOCHASTIC MODELS RICE HYBRIDS GENETIC IMPROVEMENT GENETIC GAIN BREEDING PROGRAMMES
Exploring GWAS and genomic prediction to improve Septoria tritici blotch resistance in wheat
Admas Alemu Abebe Pawan Singh Aakash Chawade (2023, [Artículo])
Septoria Tritici Blotch Wheat Breeding Genomic Prediction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENOME-WIDE ASSOCIATION STUDIES MYCOSPHAERELLA GRAMINICOLA DISEASE RESISTANCE WHEAT PLANT GROWTH
Nick Fradgley Alison Bentley Keith Gardner Stéphanie M. Swarbreck (2023, [Artículo])
Sustainable Food Systems Genomic Prediction Genome-Wide Association Analysis CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT BREEDING MARKER-ASSISTED SELECTION VARIETIES FOOD SYSTEMS QUALITY
XUECAI ZHANG Ao Zhang (2023, [Artículo])
Genome-Wide Association Study Genomic Prediction Ear Height Tassel Branch Number Waxy Corn CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENOMICS PLANT HEIGHT SWEET CORN WAXY MAIZE
Junjie Fu XUECAI ZHANG (2023, [Artículo])
Genomic Prediction Prediction Model Genetic Effects Hybrid Performance CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE GENETICS HYBRIDS PERFORMANCE ASSESSMENT
Efficacy of plant breeding using genomic information
Osval Antonio Montesinos-Lopez Alison Bentley Carolina Saint Pierre Leonardo Abdiel Crespo Herrera Morten Lillemo Jose Crossa (2023, [Artículo])
Genomic Selection Genomic Prediction Genomic Best Linear Unbiased Predictor CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA PLANT BREEDING GENOMICS MARKER-ASSISTED SELECTION ENVIRONMENT
Results from rapid-cycle recurrent genomic selection in spring bread wheat
Susanne Dreisigacker Paulino Pérez-Rodríguez Leonardo Abdiel Crespo Herrera Alison Bentley Jose Crossa (2023, [Artículo])
Genomic-Assisted Breeding Molecular Markers Pedigree Information Genomic Prediction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENOMICS GENETIC MARKERS WHEAT BREEDING PROGRAMMES
Multi-environment genomic prediction of plant traits using deep learners with dense architecture
Osval Antonio Montesinos-Lopez Jose Crossa (2018, [Artículo])
Shared Data Resources Deep Learning Genomic Prediction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ACCURACY GENOMICS NEURAL NETWORKS FORECASTING DATA MARKER-ASSISTED SELECTION
Smallholder maize yield estimation using satellite data and machine learning in Ethiopia
Zhe Guo Jordan Chamberlin Liangzhi You (2023, [Artículo])
The lack of timely, high-resolution data on agricultural production is a major challenge in developing countries where such information can guide the allocation of scarce resources for food security, agricultural investment, and other objectives. While much research has suggested that remote sensing can potentially help address these gaps, few studies have indicated the immediate potential for large-scale estimations over both time and space. In this study we described a machine learning approach to estimate smallholder maize yield in Ethiopia, using well-measured and broadly distributed ground truth data and freely available spatiotemporal covariates from remote sensing. A neural networks model outperformed other algorithms in our study. Importantly, our work indicates that a model developed and calibrated on a previous year's data could be used to reasonably estimate maize yield in the subsequent year. Our study suggests the feasibility of developing national programs for the routine generation of broad-scale and high-resolution estimates of smallholder maize yield, including seasonal forecasts, on the basis of machine learning algorithms, well-measured ground control data, and currently existing time series satellite data.
Sentinel-2 Smallholder Agriculture Yield Prediction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA INTENSIFICATION SMALLHOLDERS AGRICULTURE YIELD FORECASTING