Búsqueda
Autor: Thomas Payne
12th High Rainfall Wheat Yield Trial
Ravi Singh Thomas Payne (2019)
CIMMYT annually distributes improved germplasm developed by its researchers and partners in international nurseries trials and experiments. The High Rainfall Wheat Yield Trial (HRWYT) contains very top-yielding advance lines of spring bread wheat (Triticum aestivum) germplasm adapted to high rainfall, Wheat Mega-environment 2 (ME2HR).
Dataset
25th High Rainfall Wheat Yield Trial
Ravi Singh Thomas Payne (2019)
CIMMYT annually distributes improved germplasm developed by its researchers and partners in international nurseries trials and experiments. The High Rainfall Wheat Yield Trial (HRWYT) contains very top-yielding advance lines of spring bread wheat (Triticum aestivum) germplasm adapted to high rainfall, Wheat Mega-environment 2 (ME2HR).
Dataset
15th High Rainfall Wheat Screening Nursery
Ravi Singh Thomas Payne (2019)
CIMMYT annually distributes improved germplasm developed by its researchers and partners in international nurseries trials and experiments. The High Rainfall Wheat Screening Nursery (HRWSN) contains spring bread wheat (Triticum aestivum) germplasm adapted to high rainfall areas (Mega-environment 2).
Dataset
13th Semi-Arid Wheat Yield Trial
Ravi Singh Thomas Payne (2015)
The Semi-Arid Wheat Yield Trial (SAWYT) is a replicated yield trial that contains spring bread wheat (Triticum aestivum) germplasm adapted to low rainfall, drought prone environments typically receiving less than 500 mm of water available during the cropping cycle. The combination of water-use efficiency and water responsive broad adaptation plus yield potential is important in drought environments where rainfall is frequently erratic across and within years. Stripe rust, leaf rust and stem rust, root rots, nematodes, and bunts are the key biotic constraints. Typical target environments include winter rain or Mediterranean-type drought associated with post-flowering moisture stress and heat stress such as those found at Aleppo (Syria), Settat (Morocco) and Marcos Juarez (Argentina), all classified by CIMMYT within Wheat Mega Environment 4 (Low rainfall, semi-arid environment; ME4: SA). It is distributed to 150 locations, and contains 50 entries.
Dataset
31st Elite Selection Wheat Yield Trial
Ravi Singh Thomas Payne (2017)
The Elite Selection Wheat Yield Trial (ESWYT) is a replicated yield trial that contains spring bread wheat (Triticum aestivum) germplasm adapted to Mega-environment 1 (ME1) which represents the optimally irrigated, low rainfall areas. Major stresses include leaf, stem and yellow rusts, Karnal bunt, and lodging. Representative areas include the Gangetic Valley (India), the Indus Valley (Pakistan), the Nile Valley (Egypt), irrigated river valleys in parts of China (e.g. Chengdu), and the Yaqui Valley (Mexico). This ME encompasses 36 million hectares spread primarily over Asia and Africa between 350S -350N latitudes. White (amber)-grained types are preferred by consumers of wheat in the vast majority of the areas. It is distributed to upto 200 locations and contains 50 entries.
Dataset
48th International Durum Screening Nursery
Karim Ammar Thomas Payne (2018)
International Durum Screening Nursery (IDSN) distributes diverse CIMMYT-bred spring durum wheat germplasm adapted to irrigated and variable moisture stressed environments. Disease resistance and high industrial pasta quality are essential traits possessed in this germplasm. It is distributed to 100 locations, and contains 150 entries.
Dataset
32nd Semi-Arid Wheat Screening Nursery
Ravi Singh Thomas Payne (2017)
The Semi-Arid Wheat Screening Nursery (SAWSN) is a single replicate trial that contains diverse spring bread wheat (Triticum aestivum) germplasm adapted to low rainfall, drought prone, semi-arid environments typically receiving less than 500 mm of water available during the cropping cycle. CIMMYT' s breeding approach attempts to combine high yield potential with drought resistance for ME4. The combination of water-use efficiency and water responsive traits plus yield potential is important in drought environments where rainfall is frequently erratic across years. When rains are significantly above average in certain years, the crop must respond appropriately (water responsive) with higher yields, while expressing resistance to the wider suite of diseases that appear under more favorable conditions. Constrains including leaf, stem and yellow rusts, and Septoria spp., Fusarium spp., Pyrenophora tritici-repentis tan spot, nematodes and root rots must be considered. It is distributed to 120 locations, and contains 150-250 entries.
Dataset
45th International Durum Screening Nursery
Karim Ammar Thomas Payne (2017)
International Durum Screening Nursery (IDSN) distributes diverse CIMMYT-bred spring durum wheat germplasm adapted to irrigated and variable moisture stressed environments. Disease resistance and high industrial pasta quality are essential traits possessed in this germplasm. It is distributed to 100 locations, and contains 150 entries.
Dataset
47th International Durum Screening Nursery
Karim Ammar Thomas Payne (2020)
International Durum Screening Nursery (IDSN) distributes diverse CIMMYT-bred spring durum wheat germplasm adapted to irrigated and variable moisture stressed environments. Disease resistance and high industrial pasta quality are essential traits possessed in this germplasm. It is distributed to 100 locations, and contains 150 entries.
Dataset
37th Semi-Arid Wheat Screening Nursery
Ravi Singh Thomas Payne (2020)
The Semi-Arid Wheat Screening Nursery (SAWSN) is a single replicate trial that contains diverse spring bread wheat (Triticum aestivum) germplasm adapted to low rainfall, drought prone, semi-arid environments typically receiving less than 500 mm of water available during the cropping cycle. CIMMYT's breeding approach attempts to combine high yield potential with drought resistance for ME4. The combination of water-use efficiency and water responsive traits plus yield potential is important in drought environments where rainfall is frequently erratic across years. When rains are significantly above average in certain years, the crop must respond appropriately (water responsive) with higher yields, while expressing resistance to the wider suite of diseases that appear under more favorable conditions. Constrains including leaf, stem and yellow rusts, and Septoria spp., Fusarium spp., Pyrenophora tritici-repentis tan spot, nematodes and root rots must be considered. It is distributed to 120 locations, and contains 150-250 entries.
Dataset