Búsqueda avanzada


Área de conocimiento




43 resultados, página 2 de 5

Remote sensing of quality traits in cereal and arable production systems: A review

Zhenhai  Li xiuliang jin Gerald Blasch James Taylor (2024, [Artículo])

Cereal is an essential source of calories and protein for the global population. Accurately predicting cereal quality before harvest is highly desirable in order to optimise management for farmers, grading harvest and categorised storage for enterprises, future trading prices, and policy planning. The use of remote sensing data with extensive spatial coverage demonstrates some potential in predicting crop quality traits. Many studies have also proposed models and methods for predicting such traits based on multi-platform remote sensing data. In this paper, the key quality traits that are of interest to producers and consumers are introduced. The literature related to grain quality prediction was analyzed in detail, and a review was conducted on remote sensing platforms, commonly used methods, potential gaps, and future trends in crop quality prediction. This review recommends new research directions that go beyond the traditional methods and discusses grain quality retrieval and the associated challenges from the perspective of remote sensing data.

Quality Traits Grain Protein CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA REMOTE SENSING QUALITY GRAIN PROTEINS CEREALS PRODUCTION SYSTEMS

Wheat seed demand assessment assisted by genotyping in Ethiopia

Moti Jaleta Kindie Tesfaye Olaf Erenstein (2023, [Artículo])

This study examines the extent to which wheat varieties supplied by the formal seed system align with the varieties demanded and used by farmers in Ethiopia. The framework of stated and revealed preferences drawn from the consumer preference theory is used to analyze farmer demand for different wheat varieties. We used official data from the formal seed sector and representative survey data from wheat farm households in Ethiopia. The survey data allow to contrast the farmer reported varietal use with genotyping by sequencing (also known as DNA fingerprinting). Farmers' reliance on informal seed sources and own saved seed, among others, contributes to the misidentification of the varieties they grow. Consequently, farmers are likely to misinform the formal seed demand assessment leading to either an over- or underestimation of actual seed demand for specific wheat varieties. Genotyping by sequencing, as opposed to farmer reports, established the persistence of old varieties. This also implies vulnerability of wheat production to disease dynamics depending on the longevity of disease resistance by the variety in use. Apart from narrowing the gap between the actual and stated demand and ensuring timely replacement of wheat varieties, genotyping-assisted estimates can save seed carry-over cost. Genotyping by sequencing is increasingly used as the new benchmark and gold standard for identifying and tracking the adoption of crop varieties. The technique has potential to enhance the performance of the seed sector through effective planning that can optimize resource commitments and accelerate the rate of varietal replacement.

Seed Demand Varietal Replacement CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENOTYPING-BY-SEQUENCING SEEDS WHEAT