Filtrar por:
Tipo de publicación
- Artículo (81)
- Objeto de congreso (27)
- Tesis de maestría (11)
- Documento de trabajo (6)
- Libro (5)
Autores
- Jelle Van Loon (8)
- Alison Bentley (5)
- Hugo De Groote (5)
- Frédéric Baudron (4)
- Christian Thierfelder (3)
Años de Publicación
Editores
- CICESE (6)
- El autor (2)
- Universidad Autónoma Metropolitana (México). Unidad Azcapotzalco. Coordinación de Servicios de Información. (2)
- Atsushi Fujimura, University of Guam, Guam (1)
- CIATEQ, A.C. (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (106)
- Repositorio Institucional CICESE (8)
- CIATEQ Digital (5)
- Repositorio Institucional de Acceso Abierto de la Universidad Autónoma del Estado de Morelos (4)
- Repositorio Institucional CIBNOR (2)
Tipos de Acceso
- oa:openAccess (135)
- oa:Computación y Sistemas (1)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (109)
- CLIMATE CHANGE (20)
- MAIZE (19)
- FOOD SECURITY (16)
- WHEAT (15)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Editorial: Sorghum and pearl millet as climate resilient crops for food and nutrition security
Palak Chaturvedi Mahalingam Govindaraj Govindan Velu Wolfram Weckwerth (2022, [Artículo])
Climate Smart Crops Foxtail Millet CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BREEDING FINGER MILLET FOOD SECURITY SETARIA ITALICA GENETIC RESOURCES PEARL MILLET SORGHUM
ML JAT Rajeev Gupta (2022, [Artículo])
Decomposition Rate Nitrogen Release Placement Effect CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROP RESIDUES DEGRADATION NITROGEN PLACEMENT
Xu Wang Sandesh Kumar Shrestha Philomin Juliana Suchismita Mondal Francisco Pinto Govindan Velu Leonardo Abdiel Crespo Herrera JULIO HUERTA_ESPINO Ravi Singh Jesse Poland (2023, [Artículo])
New Crop Varieties Plant Breeding Programs Yield Prediction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA LEARNING GRAIN YIELDS WHEAT BREEDING FOOD SECURITY
Vinod Mishra Ramesh Chand UTTAM KUMAR Apurba Chowdhury arun joshi (2022, [Artículo])
Spot Blotch Recombinant Inbred Lines Bulk Segregant Analysis CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT FOOD SECURITY SINGLE NUCLEOTIDE POLYMORPHISM DISEASE RESISTANCE
Khondoker Mottaleb Gideon Kruseman Sieglinde Snapp (2022, [Artículo])
Violent conflict is a major cause of acute food crises. In 2021, at least 155 million people in 10 countries were severely food insecure and eight of those countries were experiencing armed conflict. On February 24, 2022, an armed conflict between Russian Federation (Russia) and Ukraine escalated. As Russia and Ukraine are major wheat exporters, this will aggravate the already precarious food security situation in many developing countries by disrupting wheat production and export and by accelerating price hikes in import-dependent developing countries. This study examines the potential impacts of this ongoing armed conflict between Russia and Ukraine on wheat price, consumption, and calorie intake from wheat. In doing so, it applies the conditional mixed process estimation procedure using information collected from 163 countries and territories for the years 2016–2019 from online database of the Food and Agriculture Organization of the United Nations (FAO). The study shows that, on average, a 1% decrease in the global wheat trade could increase the producers' price of wheat by 1.1%, and a 1% increase in the producers' price could reduce the yearly per capita wheat consumption by 0.59%, daily calorie intake by 0.54% and protein intake by 0.64% in the sampled countries. Based on this, the study demonstrates that a 50% reduction in wheat exports by Russia and Ukraine could increase the producers’ price of wheat by 15%, which would induce a reduction in wheat consumption and dietary energy intake by at least 8%. Since wheat export has reduced from both Russia and Ukraine, to avoid a food crisis in developing countries, policies are suggested, including near term improvement of domestic wheat production by promoting improved agronomic practices to close yield gaps to meet a substantial portion of wheat self-sufficiency goals. In the long run, countries in Africa, East Asia and South America can explore expanding wheat into new land area. International donor agencies can play a key role in supporting the ongoing wheat research and development activities.
Export-Import CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ARMED CONFLICTS CALORIES CONSUMPTION ELASTICITY FOOD SECURITY PRICES PRODUCTION WHEAT
MLN disease diagnostics, MLN disease-free seed production and MLN disease management
Suresh L.M. (2023, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA YIELD LOSSES DISEASES MAIZE PHENOTYPING GERMPLASM SYMPTOMS ECONOMIC ASPECTS
Jeroen Groot XiaoLin Yang (2022, [Artículo])
Holistic Analysis Model-Based Analysis CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROP ROTATION FOOD SECURITY WATER USE ENVIRONMENTAL PROTECTION ECONOMIC VIABILITY
A 'wiring diagram' for sink strength traits impacting wheat yield potential
Gustavo Slafer John Foulkes Matthew Paul Reynolds Erik Murchie A Elizabete Carmo-Silva Simon Griffiths (2023, [Artículo])
Grain Number Grain Weight Yield Physiology CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BREEDING GRAIN HARVEST INDEX SOURCE SINK RELATIONS YIELD COMPONENTS WHEAT
Multi-environment genomic prediction of plant traits using deep learners with dense architecture
Osval Antonio Montesinos-Lopez Jose Crossa (2018, [Artículo])
Shared Data Resources Deep Learning Genomic Prediction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ACCURACY GENOMICS NEURAL NETWORKS FORECASTING DATA MARKER-ASSISTED SELECTION
Sonam Sherpa virender kumar Andrew Mcdonald (2024, [Artículo])
Crop residue burning is a common practice in many parts of the world that causes air pollution and greenhouse gas (GHG) emissions. Regenerative practices that return residues to the soil offer a ‘no burn’ pathway for addressing air pollution while building soil organic carbon (SOC). Nevertheless, GHG emissions in rice-based agricultural systems are complex and difficult to anticipate, particularly in production contexts with highly variable hydrologic conditions. Here we predict long-term net GHG fluxes for four rice residue management strategies in the context of rice-wheat cropping systems in Eastern India: burning, soil incorporation, livestock fodder, and biochar. Estimations were based on a combination of Tier 1, 2, and 3 modelling approaches, including 100-year DNDC simulations across three representative soil hydrologic categories (i.e., dry, median, and wet). Overall, residue burning resulted in total direct GHG fluxes of 2.5, 6.1, and 8.7 Mg CO2-e in the dry, median, and wet hydrologic categories, respectively. Relative to emissions from burning (positive values indicate an increase) for the same dry to wet hydrologic categories, soil incorporation resulted in a −0.2, 1.8, or 3.1 Mg CO2-e change in emissions whereas use of residues for livestock fodder increased emissions by 2.0, 2.1, or 2.3 Mg CO2-e. Biochar reduced emissions relative to burning by 2.9 Mg CO2-e in all hydrologic categories. This study showed that the production environment has a controlling effect on methane and, therefore, net GHG balance. For example, wetter sites had 2.8–4.0 times greater CH4 emissions, on average, than dry sites when rice residues were returned to the soil. To effectively mitigate burning without undermining climate change mitigation goals, our results suggest that geographically-target approaches should be used in the rice-based systems of Eastern India to incentivize the adoption of regenerative ‘no burn’ residue management practices.
Soil Carbon Rice Residue Burning Life Cycle Assessment CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SOIL CARBON RICE LIFE CYCLE GREENHOUSE GASES CLIMATE CHANGE