Filtros
Filtrar por:
Tipo de publicación
- Event (4582)
- Artículo (1036)
- Dataset (932)
- Tesis de maestría (510)
- Tesis de doctorado (366)
Autores
- Servicio Sismológico Nacional (IGEF-UNAM) (4582)
- Thomas Payne (298)
- Fernando Nuno Dias Marques Simoes (250)
- Ravi Singh (204)
- Jose Crossa (98)
Años de Publicación
Editores
- UNAM, IGEF, SSN, Grupo de Trabajo (4582)
- International Maize and Wheat Improvement Center (644)
- Cenoteando, Facultad de Ciencias, UNAM (cenoteando.mx) (249)
- Instituto Mexicano de Tecnología del Agua (217)
- Instituto Tecnológico y de Estudios Superiores de Monterrey (106)
Repositorios Orígen
- Repositorio de datos del Servicio Sismológico Nacional (4582)
- Repositorio Institucional de Datos y Software de Investigación del CIMMYT (682)
- Repositorio institucional del IMTA (604)
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (426)
- Cenotes de Yucatan (250)
Tipos de Acceso
- oa:openAccess (7964)
- oa:embargoedAccess (13)
- oa:Computación y Sistemas (1)
Idiomas
Materias
- Sismología (13746)
- CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA (5150)
- CIENCIAS DE LA TIERRA Y DEL ESPACIO (4631)
- GEOFÍSICA (4585)
- SISMOLOGÍA Y PROSPECCIÓN SÍSMICA (4584)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Kindie Tesfaye Dereje Ademe Enyew Adgo (2023, [Artículo])
This study determined the most effective plating density (PD) and nitrogen (N) fertilizer rate for well-adapted BH540 medium-maturing maize cultivars for current climate condition in north west Ethiopia midlands. The Decision Support System for Agrotechnology Transfer (DSSAT)-Crop Environment Resource Synthesis (CERES)-Maize model has been utilized to determine the appropriate PD and N-fertilizer rate. An experimental study of PD (55,555, 62500, and 76,900 plants ha−1) and N (138, 207, and 276 kg N ha−1) levels was conducted for 3 years at 4 distinct sites. The DSSAT-CERES-Maize model was calibrated using climate data from 1987 to 2018, physicochemical soil profiling data (wilting point, field capacity, saturation, saturated hydraulic conductivity, root growth factor, bulk density, soil texture, organic carbon, total nitrogen; and soil pH), and agronomic management data from the experiment. After calibration, the DSSAT-CERES-Maize model was able to simulate the phenology and growth parameters of maize in the evaluation data set. The results from analysis of variance revealed that the maximum observed and simulated grain yield, biomass, and leaf area index were recorded from 276 kg N ha−1 and 76,900 plants ha−1 for the BH540 maize variety under the current climate condition. The application of 76,900 plants ha−1 combined with 276 kg N ha−1 significantly increased observed and simulated yield by 25% and 15%, respectively, compared with recommendation. Finally, future research on different N and PD levels in various agroecological zones with different varieties of mature maize types could be conducted for the current and future climate periods.
Maize Model Planting Density CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE MODELS SPACING NITROGEN FERTILIZERS YIELDS
Atul Kulkarni Keshab Babu Koirala Pervez Zaidi (2023, [Artículo])
Inverse Probability Weighted Regression Heat Tolerant Maize Hybrid Partial Budget CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA HEAT STRESS HEAT TOLERANCE MAIZE HYBRIDS BUDGETS YIELDS
Mesut KESER fatih ozdemir Pietro Bartolini (2022, [Artículo])
Germplasm Exchange International Nurseries Multi-Locations CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WINTER WHEAT BREEDING GERMPLASM YIELDS DATA
Dana Fuerst SHAILESH YADAV Rajib Roychowdhury Carolina Sansaloni Sariel Hübner (2022, [Artículo])
Emmer Wheat CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT GENETIC VARIATION CLIMATE PHENOLOGY YIELDS MEDITERRANEAN CLIMATE
Not raised ‘to make big decisions’: young people’s agency and livelihoods in rural Pakistan
Patti Petesch Lone Badstue Dil Bahadur Rahut Akhter Ali (2022, [Artículo])
Social Norms Qualitative Research CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURE GENDER LIVELIHOODS SOCIOECONOMIC ASPECTS YOUTH AGENCIES
La historia detrás de Gonolobus caamali (Apocynaceae), endémica de la península de Yucatán
GERMAN CARNEVALI FERNANDEZ CONCHA GUSTAVO ADOLFO ROMERO GONZALEZ José Luis Tapia Muñoz Ivón Mercedes Ramírez Morillo CLAUDIA JANETH RAMIREZ DIAZ William Rolando Cetzal Ix RODRIGO STEFANO DUNO KATYA JEANNETH ROMERO SOLER (2022, [Artículo])
Publicar una especie nueva para la ciencia es siempre una tarea interesante y retadora, sobre todo en los tiempos modernos, donde la comunidad de sistemáticos de plantas y las revistas científicas exigen investigaciones de biología comparada más completas, integrando diferentes fuentes de evidencia (morfológica y molecular), más allá de una simple descripción morfológica. Esta historia comenzó hace más de 15 años y terminó este año, cuando Gonolobus caamali Carnevali & R. Duno (Apocynaceae), fue descrita como una nueva especie para la ciencia. Presentamos aquí algunos detalles de esta especie.
ASCLEPIADOIDEAE EXTINCION MEXICO NOVEDAD TAXONOMICA YUCATAN BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) TAXONOMÍA VEGETAL TAXONOMÍA VEGETAL
Parques vemos, biodiversidad no sabemos: el caso de la herpetofauna de la ciudad de Mérida
Roberto Carlos Barrientos Medina (2023, [Artículo])
La herpetofauna, constituida por las diferentes especies de anfibios y reptiles que se pueden encontrar en un hábitat, es un buen grupo indicador de diversidad, ya que presenta características de movilidad que los hacen ser más dependientes del hábitat (lugar en el que viven). En este trabajo se analizan los patrones de diversidad de los anfibios y reptiles que se pueden encontrar en los parques ecológicos de Mérida, en distintos niveles de expresión (alfa, beta y gamma). Los resultados señalan la influencia del grado de urbanización, de acuerdo con los patrones encontrados en las diversidades beta y gamma.
AMBIENTES ANTROPIZADOS ECOLOGIA URBANA NIVELES DE DIVERSIDAD PATRONES ECOLOGICOS YUCATAN BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA ANIMAL (ZOOLOGÍA) HERPETOLOGÍA HERPETOLOGÍA
Martin van Ittersum (2023, [Artículo])
Context: Collection and analysis of large volumes of on-farm production data are widely seen as key to understanding yield variability among farmers and improving resource-use efficiency. Objective: The aim of this study was to assess the performance of statistical and machine learning methods to explain and predict crop yield across thousands of farmers’ fields in contrasting farming systems worldwide. Methods: A large database of 10,940 field-year combinations from three countries in different stages of agricultural intensification was analyzed. Random effects models were used to partition crop yield variability and random forest models were used to explain and predict crop yield within a cross-validation scheme with data re-sampling over space and time. Results: Yield variability in relative terms was smallest for wheat and barley in the Netherlands and for wheat in Ethiopia, intermediate for rice in the Philippines, and greatest for maize in Ethiopia. Random forest models comprising a total of 87 variables explained a maximum of 65 % of cereal yield variability in the Netherlands and less than 45 % of cereal yield variability in Ethiopia and in the Philippines. Crop management related variables were important to explain and predict cereal yields in Ethiopia, while predictive (i.e., known before the growing season) climatic variables and explanatory (i.e., known during or after the growing season) climatic variables were most important to explain and predict cereal yield variability in the Philippines and in the Netherlands, respectively. Finally, model cross-validation for regions or years not seen during model training reduced the R2 considerably for most crop x country combinations, while for wheat in the Netherlands this was model dependent. Conclusion: Big data from farmers’ fields is useful to explain on-farm yield variability to some extent, but not to predict it across time and space. Significance: The results call for moderate expectations towards big data and machine learning in agronomic studies, particularly for smallholder farms in the tropics where model performance was poorest independently of the variables considered and the cross-validation scheme used.
Model Accuracy Model Precision Linear Mixed Models CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MACHINE LEARNING SUSTAINABLE INTENSIFICATION BIG DATA YIELDS MODELS AGRONOMY
Testing innovations for adoption of newer and more adapted maize varieties
Michael Ndegwa Pieter Rutsaert Jason Donovan Jordan Chamberlin (2023, [Objeto de congreso])
Changing Production Conditions Genetic Innovations Maize Hybrids CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA TESTING MAIZE VARIETIES YIELDS FARMERS EXPERIMENTATION
C.M. Parihar Hari Sankar Nayak Dipaka Ranjan Sena Shankar Lal Jat Mahesh Gathala Upendra Singh (2023, [Artículo])
This study evaluated the impact of contrasting tillage and nitrogen management options on the growth, yield attributes, and yield of maize (Zea mays L.) in a conservation agriculture (CA)-based maize-wheat (Triticum aestivum L.) system. The field experiment was conducted during the rainy (kharif) seasons of 2020 and 2021 at the research farm of ICAR-Indian Agricultural Research Institute (IARI), New Delhi. The experiment was conducted in a split plot design with three tillage practices [conventional tillage with residue (CT), zero tillage with residue (ZT) and permanent beds with residue (PB)] as main plot treatments and in sub-plots five nitrogen management options [Control (without N fertilization), recommended dose of N @150 kg N/ha, Green Seeker-GS based application of split applied N, N applied as basal through urea super granules-USG + GS based application and 100% basal application of slow release fertilizer (SRF) @150 kg N/ha] with three replications. Results showed that both tillage and nitrogen management options had a significant impact on maize growth, yield attributes, and yield in both seasons. However, time to anthesis and physiological maturity were not significantly affected. Yield attributes were highest in the permanent beds and zero tillage plots, with similar numbers of grains per cob (486.1 and 468.6). The highest leaf area index (LAI) at 60 DAP was observed in PB (5.79), followed by ZT(5.68) and the lowest was recorded in CT (5.25) plots. The highest grain yield (2-year mean basis) was recorded with permanent beds plots (5516 kg/ha), while the lowest
was observed with conventional tillage (4931 kg/ha). Therefore, the study highlights the importance of CA practices for improving maize growth and yield, and suggests that farmers can achieve better results through the adoption of CA-based permanent beds and use of USG as nitrogen management option.
Green Seeker Urea Super Granules CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE UREA YIELDS ZERO TILLAGE NITROGEN