Búsqueda avanzada


Área de conocimiento




6791 resultados, página 3 de 10

Transcriptome mining provides insights into cell wall metabolism and fiber lignification in Agave tequilana Weber

Luis Fernando Maceda Lopez ELSA BEATRIZ GONGORA CASTILLO Enrique Ibarra-Laclette DALIA C. MORAN VELAZQUEZ AMARANTA GIRON RAMIREZ Matthieu Bourdon José Luis Villalpando Aguilar Gabriela Chavez-Calvillo Toomer John Tang Parastoo Azadi Jorge Manuel Santamaría Fernández Itzel López-Rosas Mercedes G Lopez June Simpson FULGENCIO ALATORRE COBOS (2022, [Artículo])

Resilience of growing in arid and semiarid regions and a high capacity of accumulating sugar-rich biomass with low lignin percentages have placed Agave species as an emerging bioen-ergy crop. Although transcriptome sequencing of fiber-producing agave species has been explored, molecular bases that control wall cell biogenesis and metabolism in agave species are still poorly understood. Here, through RNAseq data mining, we reconstructed the cellulose biosynthesis pathway and the phenylpropanoid route producing lignin monomers in A. tequilana, and evaluated their expression patterns in silico and experimentally. Most of the orthologs retrieved showed differential expression levels when they were analyzed in different tissues with contrasting cellulose and lignin accumulation. Phylogenetic and structural motif analyses of putative CESA and CAD proteins allowed to identify those potentially involved with secondary cell wall formation. RT-qPCR assays revealed enhanced expression levels of AtqCAD5 and AtqCESA7 in parenchyma cells associated with extraxylary fibers, suggesting a mechanism of formation of sclerenchyma fibers in Agave similar to that reported for xylem cells in model eudicots. Overall, our results provide a framework for un-derstanding molecular bases underlying cell wall biogenesis in Agave species studying mechanisms involving in leaf fiber development in monocots. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

AGAVE CELL WALLS LIGNOCELLULOSE CAD PROTEIN CESA PROTEIN SCLERENCHYMA BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA GENÉTICA GENÉTICA MOLECULAR DE PLANTAS GENÉTICA MOLECULAR DE PLANTAS

Potential of Omics to control diseases and pests in the Coconut tree

MIGUEL ALONSO TZEC SIMA Jean Wildort Félix María Inés Granados Alegría Mónica Aparicio Ortiz Dilery Juarez Monroy Damian Mayo Sarai Vivas-Lopez Rufino Gómez-Tah Blondy Beatriz Canto Canché Maxim Berezovski Ignacio Rodrigo Islas Flores (2022, [Artículo])

The coconut palm (Cocos nucifera L.) is a common crop in pantropical areas facing various challenges, one of them being the control of diseases and pests. Diseases such as bud rot caused by Phytophthora palmivora, lethal yellowing caused by phytoplasmas of the types 16SrIV-A, 16SrIV-D or 16SrIV-E, among others, and pests like the coconut palm weevil, Rhynchophorus vulneratus (Coleoptera: Curculionidae), and the horned beetle, Oryctes rhinocerus (Coleoptera: Scarabaeidae), are controlled by applying pesticides, pheromones and cultural control. These practices do not guarantee eradication since some causal agents have become resistant or are imbedded in infected tissues making them difficult to eradicate. This review condenses the current genomics, transcriptomics, proteomics and metabolomics studies which are being conducted with the aim of understanding the pathosystems associated with the coconut palm, highlighting the findings generated by omics studies that may become future targets for the control of diseases and pests in the coconut crop. © 2022 by the authors.

COCOS NUCIFERA L. OMICS PESTS INSECTS DISEASES PATHOGENS BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA MOLECULAR BIOLOGÍA MOLECULAR DE PLANTAS BIOLOGÍA MOLECULAR DE PLANTAS