Filtrar por:
Tipo de publicación
- Artículo (19)
- Objeto de congreso (5)
- Documento de trabajo (4)
- Tesis de maestría (1)
Autores
- Tek Sapkota (6)
- Adefris Teklewold (4)
- Prasanna Boddupalli (3)
- Sarah Hearne (3)
- Yoseph Beyene (3)
Años de Publicación
Editores
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (27)
- CIATEQ Digital (1)
- Repositorio Institucional CIBNOR (1)
Tipos de Acceso
- oa:openAccess (29)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (27)
- INBRED LINES (11)
- MAIZE (8)
- GREENHOUSE GAS EMISSIONS (6)
- HYBRIDS (6)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Anani Bruce Dan Makumbi Yoseph Beyene Prasanna Boddupalli Paul André Calatayud (2023, [Artículo])
Native Resistance Antixenosis Maize Inbred Lines CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA PEST RESISTANCE ANTIBIOSIS DEFENCE MECHANISMS FALL ARMYWORMS MAIZE INBRED LINES
Review of Nationally Determined Contributions (NCD) of China from the perspective of food systems
Tek Sapkota (2023, [Documento de trabajo])
China is the largest emitter of greenhouse gases (GHG) and one of the countries most affected by climate change. China's food systems are a major contributor to climate change: in 2018, China's food systems emitted 1.09 billion tons of carbondioxide equivalent (CO2eq) GHGs, accounting for 8.2% of total national GHG emissions and 2% of global emissions. According to the Third National Communication (TNC) Report, in 2010, GHG emissions from energy, industrial processes, agriculture, and waste accounted for 78.6%, 12.3%, 7.9%, and 1.2% of total emissions, respectively, (excluding emissions from land use, land-use change and forestry (LULUCF). Total GHG emissions from the waste sector in 2010 were 132 Mt CO2 eq, with municipal solid waste landfills accounting for 56 Mt. The average temperature in China has risen by 1.1°C over the last century (1908–2007), while nationally averaged precipitation amounts have increased significantly over the last 50 years. The sea level and sea surface temperature have risen by 90 mm and 0.9°C respectively in the last 30 years. A regional climate model predicted an annual mean temperature increase of 1.3–2.1°C by 2020 (2.3–3.3°C by 2050), while another model predicted a 1–1.6°C temperature increase and a 3.3–3.7 percent increase in precipitation between 2011 and 2020, depending on the emissions scenario. By 2030, sea level rise along coastal areas could be 0.01–0.16 meters, increasing the likelihood of flooding and intensified storm surges and causing the degradation of wetlands, mangroves, and coral reefs. Addressing climate change is a common human cause, and China places a high value on combating climate change. Climate change has been incorporated into national economic and social development plans, with equal emphasis on mitigation and adaptation to climate change, including an updated Nationally Determined Contribution (NDC) in 2021. The following overarching targets are included in China's updated NDC: • Peaking carbon dioxide emissions “before 2030” and achieving carbon neutrality before 2060. • Lowering carbon intensity by “over 65%” by 2030 from the 2005 level. • Increasing forest stock volume by around 6 billion cubic meters in 2030 from the 2005 level. The targets have come from several commitments made at various events, while China has explained very well the process adopted to produce its third national communication report. An examination of China's NDC reveals that it has failed to establish quantifiable and measurable targets in the agricultural sectors. According to the analysis of the breakdown of food systems and their inclusion in the NDC, the majority of food system activities are poorly mentioned. China's interventions or ambitions in this sector have received very little attention. The adaptation component is mentioned in the NDC, but is not found to be sector-specific or comprehensive. A few studies have rated the Chinese NDC as insufficient, one of the reasons being its failure to list the breakdown of each sector's clear pathway to achieving its goals. China's NDC lacks quantified data on food system sub-sectors. Climate Action Trackers' "Insufficient" rating indicates that China's domestic target for 2030 requires significant improvements to be consistent with the Paris Agreement's target of 1.5°C temperature limit. Some efforts are being made: for example, scientists from the Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (IEDA-CAAS) have developed methods for calculating GHG emissions from livestock and poultry farmers that have been published as an industrial standard by the Ministry of Agriculture and Rural Affairs, PRC (Prof Hongmin Dong, personal communication) but this still needs to be consolidated and linked to China’s NDC. The updated Nationally Determined Contributions fall short of quantifiable targets in agriculture and food systems as a whole, necessitating clear pathways. China's NDC is found to be heavily focused on a few sectors, including energy, transportation, and urban-rural development. The agricultural sectors' and food systems' targets are vague, and China's agrifood system has a large carbon footprint. As a result, China should focus on managing the food system (production, processing, transportation, and food waste management) to reduce carbon emissions. Furthermore, China should take additional measures to make its climate actions more comprehensive, quantifiable, and measurable, such as setting ambitious and clear targets for the agriculture sector, including activity-specific GHG-reduction pathways; prioritizing food waste and loss reduction and management; promoting sustainable livestock production and low carbon diets; reducing chemical pollution; minimizing the use of fossil fuel in the agri-system and focusing on developing green jobs, technological advancement and promoting climate-smart agriculture; promoting indigenous practices and locally led adaptation; restoring degraded agricultural soils and enhancing cooperation and private partnership. China should also prepare detailed NDC implementation plans including actions and the GHG reduction from conditional targets.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GREENHOUSE GAS EMISSIONS CLIMATE CHANGE FOOD SYSTEMS LAND USE CHANGE AGRICULTURE POLICIES DATA ANALYSIS FOOD WASTES
Agricultural emissions reduction potential by improving technical efficiency in crop production
Arun Khatri-Chhetri Tek Sapkota sofina maharjan Paresh Shirsath (2023, [Artículo])
CONTEXT: Global and national agricultural development policies normally tend to focus more on enhancing farm productivity through technological changes than on better use of existing technologies. The role of improving technical efficiency in greenhouse gas (GHG) emissions reduction from crop production is the least explored area in the agricultural sector. But improving technical efficiency is necessary in the context of the limited availability of existing natural resources (particularly land and water) and the need for GHG emission reduction from the agriculture sector. Technical efficiency gains in the production process are linked with the amount of input used nd the cost of production that determines both economic and environmental gains from the better use of existing technologies. OBJECTIVE: To assess a relationship between technical efficiency and GHG emissions and test the hypothesis that improving technical efficiency reduces GHG emissions from crop production. METHODS: This study used input-output data collected from 10,689 rice farms and 5220 wheat farms across India to estimate technical efficiency, global warming potential, and emission intensity (GHG emissions per unit of crop production) under the existing crop production practices. The GHG emissions from rice and wheat production were estimated using the CCAFS Mitigation Options Tool (CCAFS-MOT) and the technical efficiency of production was estimated through a stochastic production frontier analysis. RESULTS AND CONCLUSIONS: Results suggest that improving technical efficiency in crop production can reduce emission intensity but not necessarily total emissions. Moreover, our analysis does not support smallholders tend to be technically less efficient and the emissions per unit of food produced by smallholders can be relatively high. Alarge proportion of smallholders have high technical efficiency, less total GHG emissions, and low emissions intensity. This study indicates the levels of technical efficiency and GHG emission are largely influenced by farming typology, i.e. choice and use of existing technologies and management practices in crop cultivation. SIGNIFICANCE: This study will help to promote existing improved technologies targeting GHG emissions reduction from the agriculture production systems.
Technical Efficiency Interventions CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MITIGATION PRODUCTIVITY CROP PRODUCTION GREENHOUSE GAS EMISSIONS
Achla Sharma Juan Burgueño Prashant Vikram Nitika Sandhu Satinder Kaur Parveen Chhuneja (2023, [Artículo])
Plant Nitrogen Use Efficiency Pre-Breeding Lines Genome-Wide Association Study Marker Trait Association CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT PRE-BREEDING BREEDING LINES NITROGEN LANDRACES GENETIC MARKERS
José Humberto Vergara García (2023, [Tesis de maestría])
En este trabajo de investigación se empleó el método de Helgeson & Birnie para realizar el balanceo por peso posicional de cinco líneas de ensamble modular de amortiguadores de la empresa ZF Suspension Technology Guadalajara S.A. de C.V. La metodología empleada permitió establecer las condiciones actuales de operación de las cinco líneas. Mediante el uso del método mencionado se encontró que en la mayoría de las líneas de ensamble analizadas sus tareas se encuentran correctamente balanceadas y ordenadas, corroborando así el buen trabajo realizado al momento de su instalación y puesta en marcha. Si bien en cualquier proceso de ensamble siempre hay oportunidades de mejora, contar con líneas de ensamble bien balanceadas permite a la empresa tener una base sólida para la producción de este tipo de componentes automotrices.
The Helgeson & Birnie method was employed in this research for balancing, by positional weight, five modular strut assembly production lines at ZF Suspension Technology Guadalajara S.A. De C.V. The proposed methodology allowed to know the current operating conditions of the production lines. It was found that most of the analyzed production lines are correctly balanced suggesting a correct commissioning and start up procedure performed when the lines were initially installed. Although every assembling line always can be improved, having well-balanced assembly lines provides a solid base line for any automotive manufacturing company.
Líneas de ensamble modular Método de Helgeson & Birnie Peso posicional Final assembly lines Helgeson & Birnie method Positional weight INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS OTRAS ESPECIALIDADES TECNOLÓGICAS OTRAS OTRAS
Review of Nationally Determined Contributions (NCD) of Vietnam from the perspective of food systems
Tek Sapkota (2023, [Documento de trabajo])
Over the past decades, Vietnam has significantly progressed and has transformed from being a food-insecure nation to one of the world’s leading exporters in food commodities, and from one of the world’s poorest countries to a low-middle-income country. The agriculture sector is dominated by rice and plays a vital role in food security, employment, and foreign exchange. Vietnam submitted its updated Nationally Determined Contributions (NDC) in 2022 based on the NDC 2020. There is a significant increase in greenhouse gas (GHG) emission reduction, towards the long-term goals identified in Vietnam’s National Climate Change Strategy to 2025, and efforts are being made to fulfil the commitments made at COP26. The Agriculture Sector is the second-largest contributor of GHG emissions in Vietnam, accounting for 89.75 MtCO2eq, which was about 31.6 percent of total emissions in 2014. Rice cultivation is the biggest source of emissions in the agriculture sector, accounting for 49.35% of emissions from agriculture. The total GHG removal from Land Use, Land Use Change and Forestry (LULUCF) in 2014 was -37.54 MtCO2eq, of which the largest part was from the forest land sub-sector (35.61 MtCO2eq), followed by removal from croplands (7.31 MtCO2eq) (MONRE 2019).
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE GREENHOUSE GAS EMISSIONS FOOD SYSTEMS LAND USE CHANGE AGRICULTURE POLICIES DATA ANALYSIS
Review of Nationally Determined Contributions (NCD) of Colombia from the perspective of food systems
Tek Sapkota (2023, [Documento de trabajo])
Food is a vital component of Colombia's economy. The impact of climate change on agriculture and food security in the country is severe. The effects have resulted in decreased production and in the productivity of agricultural soil. Desertification processes are accelerating and intensifying. Colombia's government formally submitted its Nationally Determined Contribution (NDC) on December 29, 2020. This paper examines Colombia's NDC from the standpoint of the food system.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE GREENHOUSE GAS EMISSIONS FOOD SYSTEMS LAND USE CHANGE AGRICULTURE POLICIES DATA ANALYSIS FOOD WASTES
Vinod Mishra Ramesh Chand UTTAM KUMAR Apurba Chowdhury arun joshi (2022, [Artículo])
Spot Blotch Recombinant Inbred Lines Bulk Segregant Analysis CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT FOOD SECURITY SINGLE NUCLEOTIDE POLYMORPHISM DISEASE RESISTANCE
Spatial Effects of Urban Transport on Air Pollution in Metropolitan Municipalities of Mexico
GERZAIN AVILES POLANCO Marco Antonio Almendárez Hernández Luis Felipe Beltrán Morales Alfredo Ortega Rubio (2022, [Artículo])
"The objective of this work was to estimate the local effects and spatial spillover effects of the number of vehicles, use of urban public transport, and population density on nitrogen oxide emissions for 405 metropolitan municipalities in Mexico in 2016. To this end, a Spatial Durbin Model was estimated. We found positive direct effects of the number of vehicles and population density and negative direct effects of the use of urban public transport. The number of vehicles in circulation had negative spillover effects on the nitrogen oxide emissions of neighboring municipalities. These results indicate that the design of public policy programs aimed at reducing air pollution in Mexico should be based on coordination across metropolitan municipalities."
private car transportation, air pollution, nitrogen oxide emissions, spatial spillover effects, metropolitan municipalities CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO METEOROLOGÍA CONTAMINACIÓN ATMOSFÉRICA CONTAMINACIÓN ATMOSFÉRICA