Filtrar por:
Tipo de publicación
- Artículo (73)
- Tesis de maestría (21)
- Objeto de congreso (15)
- Libro (8)
- Artículo (7)
Autores
- Paresh Shirsath (6)
- Anil Pimpale (3)
- Jelle Van Loon (3)
- José Luis Hernández-Hernández (3)
- ML JAT (3)
Años de Publicación
Editores
- El autor (15)
- CICESE (9)
- Universidad Autónoma de Ciudad Juárez (4)
- Universidad Autónoma de Ciudad Juárez. Instituto de Arquitectura, Diseño y Arte (3)
- Universidad de Guanajuato (2)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (72)
- Repositorio Institucional CICESE (16)
- Repositorio Digital CIDE (12)
- Repositorio Institucional CIBNOR (7)
- Repositorio Institucional de Ciencia Abierta de la Universidad Autónoma de Guerrero (7)
Tipos de Acceso
- oa:openAccess (131)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (76)
- CLIMATE CHANGE (39)
- CIENCIAS SOCIALES (32)
- CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA (15)
- AGRICULTURE (14)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Lovemore Chipindu Walter Mupangwa Isaiah Nyagumbo Mainassara Zaman-Allah (2023, [Artículo])
Autoregressive Integrated Moving Average Facebook Prophet Hidden Markov Model Regression Regression with Hidden Logistic Process CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA COASTAL AREAS SEMIARID ZONES SUBHUMID ZONES RAINFALL CLIMATE CHANGE
Gender analysis of household seed security : A case of maize and wheat seed systems in Nepal
Hom Nath Gartaula (2022, [Libro])
Seed Security Mountains CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SEED SYSTEMS MAIZE WHEAT ROLE OF WOMEN WOMEN'S PARTICIPATION
Adaptation to current and future climatic risks in agriculture: Rajasthan, India
Paresh Shirsath Anil Pimpale Pramod Aggarwal (2022, [Libro])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA RISK CLIMATE RESILIENCE AGRICULTURE CLIMATE CHANGE ADAPTATION
UTTAM KUMAR Rajeev Ranjan Kumar Philomin Juliana Sundeep Kumar (2022, [Artículo])
Genomic Selection Single-Trait Genomic Selection Multi-Trait Genomic Selection Genomic Estimated Breeding Value Climate-Resilient Crops CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MARKER-ASSISTED SELECTION CLIMATE CHANGE STRESS CLIMATE RESILIENCE CROPS ABIOTIC STRESS BIOTIC STRESS
Sandesh Thapa Darbin Joshi (2022, [Artículo])
Heat Resilient Maize Phenotypic Coefficient of Variation Heritable Traits CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENETIC PARAMETERS MAIZE HYBRIDS
Farmers′ use of climate change adaptation strategies and their impacts on food security in Kenya
Girma Gezmu Gebre Yuichiro Amekawa Asmiro Abeje Fikadu Dil Bahadur Rahut (2023, [Artículo])
Adaptation Strategies Smallholder Farmers CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE FOOD SECURITY SMALLHOLDERS
Agricultura en tiempos de incertidumbre: ¿qué podemos hacer?
Jelle Van Loon (2022, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA FOOD SECURITY INFLATION FOOD PRICES AGRIFOOD SYSTEMS CLIMATE CHANGE SUSTAINABLE INTENSIFICATION
Establishment of heterotic groups for hybrid wheat breeding
Yunbi Xu (2022, [Artículo])
Genomic Prediction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE CROPS FORECASTING PLANTS COMBINING ABILITY HETEROSIS HETEROTIC GROUPS MALE INFERTILITY PLANT HEIGHT WHEAT
Sonam Sherpa virender kumar Andrew Mcdonald (2024, [Artículo])
Crop residue burning is a common practice in many parts of the world that causes air pollution and greenhouse gas (GHG) emissions. Regenerative practices that return residues to the soil offer a ‘no burn’ pathway for addressing air pollution while building soil organic carbon (SOC). Nevertheless, GHG emissions in rice-based agricultural systems are complex and difficult to anticipate, particularly in production contexts with highly variable hydrologic conditions. Here we predict long-term net GHG fluxes for four rice residue management strategies in the context of rice-wheat cropping systems in Eastern India: burning, soil incorporation, livestock fodder, and biochar. Estimations were based on a combination of Tier 1, 2, and 3 modelling approaches, including 100-year DNDC simulations across three representative soil hydrologic categories (i.e., dry, median, and wet). Overall, residue burning resulted in total direct GHG fluxes of 2.5, 6.1, and 8.7 Mg CO2-e in the dry, median, and wet hydrologic categories, respectively. Relative to emissions from burning (positive values indicate an increase) for the same dry to wet hydrologic categories, soil incorporation resulted in a −0.2, 1.8, or 3.1 Mg CO2-e change in emissions whereas use of residues for livestock fodder increased emissions by 2.0, 2.1, or 2.3 Mg CO2-e. Biochar reduced emissions relative to burning by 2.9 Mg CO2-e in all hydrologic categories. This study showed that the production environment has a controlling effect on methane and, therefore, net GHG balance. For example, wetter sites had 2.8–4.0 times greater CH4 emissions, on average, than dry sites when rice residues were returned to the soil. To effectively mitigate burning without undermining climate change mitigation goals, our results suggest that geographically-target approaches should be used in the rice-based systems of Eastern India to incentivize the adoption of regenerative ‘no burn’ residue management practices.
Soil Carbon Rice Residue Burning Life Cycle Assessment CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SOIL CARBON RICE LIFE CYCLE GREENHOUSE GASES CLIMATE CHANGE
Review of Nationally Determined Contributions (NCD) of Vietnam from the perspective of food systems
Tek Sapkota (2023, [Documento de trabajo])
Over the past decades, Vietnam has significantly progressed and has transformed from being a food-insecure nation to one of the world’s leading exporters in food commodities, and from one of the world’s poorest countries to a low-middle-income country. The agriculture sector is dominated by rice and plays a vital role in food security, employment, and foreign exchange. Vietnam submitted its updated Nationally Determined Contributions (NDC) in 2022 based on the NDC 2020. There is a significant increase in greenhouse gas (GHG) emission reduction, towards the long-term goals identified in Vietnam’s National Climate Change Strategy to 2025, and efforts are being made to fulfil the commitments made at COP26. The Agriculture Sector is the second-largest contributor of GHG emissions in Vietnam, accounting for 89.75 MtCO2eq, which was about 31.6 percent of total emissions in 2014. Rice cultivation is the biggest source of emissions in the agriculture sector, accounting for 49.35% of emissions from agriculture. The total GHG removal from Land Use, Land Use Change and Forestry (LULUCF) in 2014 was -37.54 MtCO2eq, of which the largest part was from the forest land sub-sector (35.61 MtCO2eq), followed by removal from croplands (7.31 MtCO2eq) (MONRE 2019).
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE GREENHOUSE GAS EMISSIONS FOOD SYSTEMS LAND USE CHANGE AGRICULTURE POLICIES DATA ANALYSIS