Filtros
Filtrar por:
Tipo de publicación
- Artículo (32)
- Objeto de congreso (13)
- Documento de trabajo (5)
- Tesis de maestría (3)
- Capítulo de libro (2)
Autores
- ML JAT (6)
- Suresh L.M. (6)
- Tek Sapkota (6)
- Jose Crossa (3)
- Osval Antonio Montesinos-Lopez (3)
Años de Publicación
Editores
- CICESE (2)
- Atsushi Fujimura, University of Guam, Guam (1)
- CIATEQ, A.C. (1)
- Editorial Académica Dragón Azteca (1)
- Instituto Politécnico Nacional (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (40)
- Repositorio Institucional CICESE (3)
- Repositorio Institucional Zaloamati (3)
- Repositorio Institucional CIBNOR (2)
- Repositorio Institucional de Acceso Abierto de la Universidad Autónoma del Estado de Morelos (2)
Tipos de Acceso
- oa:openAccess (55)
- oa:Computación y Sistemas (1)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (41)
- MAIZE (11)
- CIENCIAS TECNOLÓGICAS (6)
- CLIMATE CHANGE (6)
- DATA (6)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Conservation agriculture based sustainable intensification: India updates
ML JAT (2021, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CONSERVATION AGRICULTURE SUSTAINABLE INTENSIFICATION LAND MANAGEMENT TILLAGE PLANT ESTABLISHMENT BIOMASS WATER MANAGEMENT
Martin van Ittersum (2023, [Artículo])
Context: Collection and analysis of large volumes of on-farm production data are widely seen as key to understanding yield variability among farmers and improving resource-use efficiency. Objective: The aim of this study was to assess the performance of statistical and machine learning methods to explain and predict crop yield across thousands of farmers’ fields in contrasting farming systems worldwide. Methods: A large database of 10,940 field-year combinations from three countries in different stages of agricultural intensification was analyzed. Random effects models were used to partition crop yield variability and random forest models were used to explain and predict crop yield within a cross-validation scheme with data re-sampling over space and time. Results: Yield variability in relative terms was smallest for wheat and barley in the Netherlands and for wheat in Ethiopia, intermediate for rice in the Philippines, and greatest for maize in Ethiopia. Random forest models comprising a total of 87 variables explained a maximum of 65 % of cereal yield variability in the Netherlands and less than 45 % of cereal yield variability in Ethiopia and in the Philippines. Crop management related variables were important to explain and predict cereal yields in Ethiopia, while predictive (i.e., known before the growing season) climatic variables and explanatory (i.e., known during or after the growing season) climatic variables were most important to explain and predict cereal yield variability in the Philippines and in the Netherlands, respectively. Finally, model cross-validation for regions or years not seen during model training reduced the R2 considerably for most crop x country combinations, while for wheat in the Netherlands this was model dependent. Conclusion: Big data from farmers’ fields is useful to explain on-farm yield variability to some extent, but not to predict it across time and space. Significance: The results call for moderate expectations towards big data and machine learning in agronomic studies, particularly for smallholder farms in the tropics where model performance was poorest independently of the variables considered and the cross-validation scheme used.
Model Accuracy Model Precision Linear Mixed Models CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MACHINE LEARNING SUSTAINABLE INTENSIFICATION BIG DATA YIELDS MODELS AGRONOMY
The generation challenge programme platform: Semantic standards and workbench for crop science
Richard Bruskiewich Guy Davenport Mathieu Rouard Reinhard Simon Samart Wanchana Trushar Shah Victor Jun Ulat Andrew Farmer Pankaj Jaiswal Mark Wilkinson David Marshall Alyssa Collins (2008, [Artículo])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROP IMPROVEMENT GENETIC RESOURCES PLANT BREEDING BIODIVERSITY COMPUTER APPLICATIONS DIGITAL TECHNOLOGY DATA PROCESSING
Review of Nationally Determined Contributions (NCD) of Vietnam from the perspective of food systems
Tek Sapkota (2023, [Documento de trabajo])
Over the past decades, Vietnam has significantly progressed and has transformed from being a food-insecure nation to one of the world’s leading exporters in food commodities, and from one of the world’s poorest countries to a low-middle-income country. The agriculture sector is dominated by rice and plays a vital role in food security, employment, and foreign exchange. Vietnam submitted its updated Nationally Determined Contributions (NDC) in 2022 based on the NDC 2020. There is a significant increase in greenhouse gas (GHG) emission reduction, towards the long-term goals identified in Vietnam’s National Climate Change Strategy to 2025, and efforts are being made to fulfil the commitments made at COP26. The Agriculture Sector is the second-largest contributor of GHG emissions in Vietnam, accounting for 89.75 MtCO2eq, which was about 31.6 percent of total emissions in 2014. Rice cultivation is the biggest source of emissions in the agriculture sector, accounting for 49.35% of emissions from agriculture. The total GHG removal from Land Use, Land Use Change and Forestry (LULUCF) in 2014 was -37.54 MtCO2eq, of which the largest part was from the forest land sub-sector (35.61 MtCO2eq), followed by removal from croplands (7.31 MtCO2eq) (MONRE 2019).
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE GREENHOUSE GAS EMISSIONS FOOD SYSTEMS LAND USE CHANGE AGRICULTURE POLICIES DATA ANALYSIS
Review of Nationally Determined Contributions (NCD) of Colombia from the perspective of food systems
Tek Sapkota (2023, [Documento de trabajo])
Food is a vital component of Colombia's economy. The impact of climate change on agriculture and food security in the country is severe. The effects have resulted in decreased production and in the productivity of agricultural soil. Desertification processes are accelerating and intensifying. Colombia's government formally submitted its Nationally Determined Contribution (NDC) on December 29, 2020. This paper examines Colombia's NDC from the standpoint of the food system.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE GREENHOUSE GAS EMISSIONS FOOD SYSTEMS LAND USE CHANGE AGRICULTURE POLICIES DATA ANALYSIS FOOD WASTES
Review of Nationally Determined Contributions (NCD) of Kenya from the perspective of food systems
Tek Sapkota (2023, [Documento de trabajo])
Agriculture is one of the fundamental pillars of the 2022–2027 Bottom-up Economic Transformation Plan of the Government of Kenya for tackling complex domestic and global challenges. Kenya's food system is crucial for climate change mitigation and adaptation. Kenya has prioritized aspects of agriculture, food, and land use as critical sectors for reducing emissions towards achieving Vision 2030's transformation to a low-carbon, climate-resilient development pathway. Kenya's updated NDC, as well as supporting mitigation and adaptation technical analysis reports and other policy documents, has identified an ambitious set of agroecological transformative measures to promote climate-smart agriculture, regenerative approaches, and nature-positive solutions. Kenya is committed to implementing and updating its National Climate Change Action Plans (NCCAPs) to present and achieve the greenhouse gas (GHG) emission reduction targets and resilience outcomes that it has identified.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE GREENHOUSE GAS EMISSIONS FOOD SYSTEMS LAND USE CHANGE AGRICULTURE POLICIES DATA ANALYSIS FOOD WASTES
MLN disease diagnostics, surveillance, MLN disease-free seed production, and MLN disease management
Suresh L.M. (2022, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA DISEASES DISEASE MANAGEMENT SEED PRODUCTION MAIZE NECROSIS YIELD LOSSES ECONOMIC IMPACT SURVEILLANCE SYSTEMS TRAINING
Nand Lal Kushwaha Paresh Shirsath Dipaka Ranjan Sena (2022, [Artículo])
FResampler1 Seasonal Climate Forecasts Decision Support System for Agrotechnology Transfer CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE DECISION SUPPORT SYSTEMS YIELDS RICE RISK MANAGEMENT
Accumulation of wheat phenolic acids under different nitrogen rates and growing environments
Wenfei Tian Yong Zhang Zhonghu He (2022, [Artículo])
Functional Wheat Trans-Ferulic Acid Nitrogen Management Environment Interaction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT PHENOLIC ACIDS NITROGEN ENVIRONMENT ANTIOXIDANTS