Búsqueda avanzada


Área de conocimiento




Filtrar por:

Tipo de publicación

Autores

Años de Publicación

Editores

Repositorios Orígen

Tipos de Acceso

Idiomas

Materias

Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales

26 resultados, página 1 de 3

Pathways from information to the adoption of conservation agriculture practices in Malawi and Tanzania

Paswel Marenya Dil Bahadur Rahut (2023, [Artículo])

To reduce agriculture's carbon, land and water footprint, the diffusion of conservation farming methods is one commonly cited proposition. Yet the process of translating available information on new conservation farming methods into farmers' practices is often a black box in many studies. This understanding is critical to inform strategies for scaling these complex, knowledge-intensive, but necessary practices for improving agriculture's resource and climate balance sheet. By implementing a series of mediation analysis using data from 700 households in Malawi and 930 households in Tanzania, this study examines how an improved understanding of conservation agriculture (CA) principles is an important mediator in the pathway from extension contact to the adoption of two of the CA practices examined. For the adoption of conservation tillage, the share of the mediated treatment effect was in the 31.5–34.4% range, while it was 31.6–46.9% for the adoption of soil cover (mulching). Our results suggest that unless learning from external sources strongly correlates with improved farmers' technical understanding of new farming practices, private learning by doing must be a critical adjunct to other avenues of learning. Beyond the basic promotional goals, improving farmers' technical know-how needs to be the centerpiece of holistic efforts in support of conservation farming and similar knowledge-intensive practices necessary for agriculture's sustinability goals.

CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CONSERVATION AGRICULTURE SMALLHOLDERS AGRICULTURAL PRACTICES FIELD EXPERIMENTATION

On-farm assessment of yield and quality traits in durum wheat

Facundo Tabbita Iván Ortíz-Monasterios Francisco Javier Pinera-Chavez Maria Itria Ibba Carlos Guzman (2023, [Artículo])

BACKGROUND: Durum wheat is key source of calories and nutrients for many regions of the world. Demand for it is predicted to increase. Further efforts are therefore needed to develop new cultivars adapted to different future scenarios. Developing a novel cultivar takes, on average, 10 years and advanced lines are tested during the process, in general, under standardized conditions. Although evaluating candidate genotypes for commercial release under different on-farm conditions is a strategy that is strongly recommended, its application for durum wheat and particularly for quality traits has been limited. This study evaluated the grain yield and quality performance of eight different genotypes across five contrasting farmers’ fields over two seasons. Combining different analysis strategies, the most outstanding and stable genotypes were identified. RESULTS: The analyses revealed that some traits were mainly explained by the genotype effect (thousand kernel weight, flour sodium dodecyl sulfate sedimentation volume, and flour yellowness), others by the management practices (yield and grain protein content), and others (test weight) by the year effect. In general, yield showed the highest range of variation across genotypes, management practices, and years and test weight the narrowest range. Flour yellowness was the most stable trait across management conditions, while yield-related traits were the most unstable. We also determined the most representative and discriminative field conditions, which is a beneficial strategy when breeders are constrained in their ability to develop multi-environment experiments. CONCLUSIONS: We concluded that assessing genotypes in different farming systems is a valid and complementary strategy for on-station trials for determining the performance of future commercial cultivars in heterogeneous environments to improve the breeding process and resources.

Wheat Quality GGE Analysis Flour Yellowness CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA FLOURS WHEAT QUALITY YIELDS FIELD EXPERIMENTATION