Búsqueda
Autor: ABEL QUEVEDO NOLASCO
Redes neuronales artificiales en la estimación de la evapotranspiración de referencia
Artificial neural networks in the estimation of reference evapotranspiration
ROCIO CERVANTES OSORNIO RAMON ARTEAGA RAMIREZ MARIO ALBERTO VAZQUEZ PEÑA WALDO OJEDA BUSTAMANTE ABEL QUEVEDO NOLASCO (2011)
Las redes neuronales artificiales representan un vasto campo de investigación, puesto que han demostrado tener aplicación en varios campos de la ciencia, su capacidad de lidiar con no linealidades en diversos fenómenos, y los diferentes trabajos realizados en la estimación y/o pronóstico para predecir variables climáticas, que inciden directa e indirectamente en la evapotranspiración de referencia y la propia evapotranspiración ha originado el desarrollo de este trabajo. El objetivo fue presentar una revisión de literatura sobre redes neuronales artificiales, para la estimación de la evapotranspiración de referencia y variables relacionadas, que incluye: la teoría y fundamentos de las redes neuronales artificiales y el algoritmo backpropagation; algunas similitudes y diferencias entre los modelos estadísticos tradicionales y las redes neuronales artificiales; aplicaciones de las redes neuronales artificiales en la estimación de la evapotranspiración de referencia; y variables que se asocian con las perspectivas de las redes neuronales artificiales en la predicción de variables agroclimáticas
Artículo
Evapotranspiración Redes neuronales artificiales Predicción INGENIERÍA Y TECNOLOGÍA
ROCIO CERVANTES OSORNIO RAMON ARTEAGA RAMIREZ MARIO ALBERTO VAZQUEZ PEÑA WALDO OJEDA BUSTAMANTE ABEL QUEVEDO NOLASCO (2012)
Resulta costoso medir directamente la evapotranspiración de referencia (ET0) con un lisímetro, y al no contar con esta información se utilizó el método de Penman-Monteith modificado por la FAO (ET0 FAO-56 P-M) para su cálculo. El objetivo del presente trabajo fue realizar una comparación de modelos empíricos como el de Hargreaves, Hargreaves calibrado y Priestley-Taylor, con el modelo de redes neuronales artificiales función de base radial (RNA BR), con las mismas variables de entrada, en la estimación de la ET0 FAO-56 P-M. Las estimaciones de ET0 se evaluaron en cuatro estaciones climáticas del Distrito 075, Valle del Fuerte en Sinaloa, México.
Artículo
Cultivos alimenticios Planificación del riego Evapotranspiración Modelos matemáticos INGENIERÍA Y TECNOLOGÍA
Comparación de modelos para estimar la presión real de vapor de agua
ROCIO CERVANTES OSORNIO RAMON ARTEAGA RAMIREZ MARIO ALBERTO VAZQUEZ PEÑA WALDO OJEDA BUSTAMANTE Abel Quevedo Nolasco (2013)
La presión real de vapor de agua es una variable básica para estimar la evapotranspiración de los cultivos, uno de los componentes del ciclo hidrológico. Sin embargo, es difícil y cara de medir de forma directa, por lo que, en la práctica, se recurre a estimaciones basadas en la temperatura y relaciones sicrométricas. El objetivo del presente trabajo fue realizar una comparación de diferentes métodos convencionales para el cálculo de la presión real de vapor y compararlos con las estimaciones realizadas con dos tipos de redes neuronales artificiales: feedforward backpropagation y radial basis function. Se usaron datos meteorológicos de cuatro estaciones del Distrito 075, localizadas en el Valle del Fuerte, al norte de Sinaloa, México. Los resultados indican que la red neuronal artificial tipo radial basis function (escenario E4) mostró ser el mejor método en la estimación de la presión actual de vapor de agua.
Artículo
Humedad atmosférica Déficit de presión de vapor Distritos de riego Redes neuronales artificiales CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA