Filtrar por:
Tipo de publicación
- Artículo (199)
- Objeto de congreso (17)
- Tesis de maestría (13)
- Capítulo de libro (12)
- Artículo (9)
Autores
- Jose Crossa (10)
- Alison Bentley (9)
- Osval Antonio Montesinos-Lopez (7)
- Susanne Dreisigacker (6)
- Bekele Abeyo (5)
Años de Publicación
Editores
- Universidad Autónoma de Ciudad Juárez (8)
- CICESE (7)
- Universidad Autónoma Metropolitana (México). (4)
- Universidad Autónoma Metropolitana (México). Unidad Azcapotzalco, División de Ciencias y Artes para el Diseño, Departamento de Evaluación del Diseño en el Tiempo. (3)
- Amitava Mukherjee, VIT University, India (2)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (144)
- Repositorio Institucional CICESE (41)
- Repositorio Institucional CIBNOR (14)
- Repositorio Institucional Zaloamati (9)
- Repositorio Institucional de la Universidad Autónoma de Ciudad Juárez (9)
Tipos de Acceso
- oa:openAccess (256)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (155)
- BIOLOGÍA Y QUÍMICA (41)
- CIENCIAS DE LA VIDA (39)
- WHEAT (38)
- MAIZE (35)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Fuai Sun XUECAI ZHANG Haoqiang Yu (2022, [Artículo])
BZR1s CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ARABIDOPSIS DNA BINDING PROTEINS PLANT PROTEIN TRANSCRIPTION FACTORS DROUGHT GENE EXPRESSION REGULATION GENETICS MAIZE METABOLISM TRANSGENIC PLANTS ABIOTIC STRESS
Osval Antonio Montesinos-Lopez ABELARDO MONTESINOS LOPEZ RICARDO ACOSTA DIAZ Rajeev Varshney Jose Crossa ALISON BENTLEY (2022, [Artículo])
Genomic selection (GS) is a predictive methodology that trains statistical machine-learning models with a reference population that is used to perform genome-enabled predictions of new lines. In plant breeding, it has the potential to increase the speed and reduce the cost of selection. However, to optimize resources, sparse testing methods have been proposed. A common approach is to guarantee a proportion of nonoverlapping and overlapping lines allocated randomly in locations, that is, lines appearing in some locations but not in all. In this study we propose using incomplete block designs (IBD), principally, for the allocation of lines to locations in such a way that not all lines are observed in all locations. We compare this allocation with a random allocation of lines to locations guaranteeing that the lines are allocated to
the same number of locations as under the IBD design. We implemented this benchmarking on several crop data sets under the Bayesian genomic best linear unbiased predictor (GBLUP) model, finding that allocation under the principle of IBD outperformed random allocation by between 1.4% and 26.5% across locations, traits, and data sets in terms of mean square error. Although a wide range of performance improvements were observed, our results provide evidence that using IBD for the allocation of lines to locations can help improve predictive performance compared with random allocation. This has the potential to be applied to large-scale plant breeding programs.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA Bayes Theorem Genome Inflammatory Bowel Diseases Models, Genetic Plant Breeding
EGS planning, production, maintenance of inbred lines and Quality Assurance/Quality Control (QA/QC)
Fidelis Owino Berhanu Tadesse Ertiro (2022, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA INBRED LINES SEED QUALITY QUALITY CONTROL GENETIC MARKERS
Yoseph Beyene Anani Bruce Manje Gowda Andrew Chavangi Prasanna Boddupalli (2023, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BREEDING GENETIC RESISTANCE MAIZE GERMPLASM HYBRIDS
Molecular pre-breeding in wheat physiology
David González-Diéguez (2023, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT PRE-BREEDING MOLECULAR GENETICS MARKER-ASSISTED SELECTION INTROGRESSION
GIOVANNY COVARRUBIAS-PAZARAN Hans-Peter Piepho (2023, [Artículo])
Average Semivariance Linear Mixed Model Variance Component Estimation Polygenic Inheritance Oligogenic Inheritance Mendelian Inheritance CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MENDELISM GENETIC VARIANCE GENOME-WIDE ASSOCIATION STUDIES PHENOTYPES CHROMOSOME MAPPING
Enhancement of plant variety protection and regulation using molecular marker technology
Yunbi Xu Jian Zhang Jiansheng LI (2022, [Artículo])
Plant Variety Protection Distinctness-Uniformity-Stability Essentially Derived Variety Molecular Markers Molecular Diagnostics Genetic Similarity CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENETICS GENETIC MARKERS PLANT BREEDING VARIETIES
ARLETTE MARIMAR PACHECO SANDOVAL (2019, [Artículo])
Diet is a primary driver of the composition of gut microbiota and is considered one of the main routes of microbial colonization. Prey identification is fundamental for correlating the diet with the presence of particular microbial groups. The present study examined how diet influenced the composition and function of the gut microbiota of the Pacific harbor seal (Phoca vitulina richardii) in order to better understand the role of prey consumption in shaping its microbiota. This species is a good indicator of the quality of the local environment due to both its foraging and haul-out site fidelity. DNA was extracted from 20 fecal samples collected from five harbor seal colonies located in Baja California, Mexico. The V4 region of 16S rRNA gene was amplified and sequenced using the Illumina technology. Results showed that the gut microbiota of the harbor seals was dominated by the phyla Firmicutes (37%), Bacteroidetes (26%) and Fusobacteria (26%) and revealed significant differences in its composition among the colonies. Funtional analysis using the PICRUSt software suggests a high number of pathways involved in the basal metabolism, such as those for carbohydrates (22%) and amino acids (20%), and those related to the degradation of persistent environmental pollutants. In addition, a DNA metabarcoding analysis of the same samples, via the amplification and sequencing of the mtRNA 16S and rRNA 18S genes, was used to identify the prey consumed by harbor seals revealing the consumption of prey with mainly demersal habits. Functional redundancy in the seal gut microbiota was observed, irrespective of diet or location. Our results indicate that the frequency of occurrence of specific prey in the harbor seal diet plays an important role in shaping the composition of the gut microbiota of harbor seals by influencing the relative abundance of specific groups of gut microorganisms. A significant relationship was found among diet, gut microbiota composition and OTUs assigned to a particular metabolic pathway. © 2019 Pacheco-Sandoval et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
RNA 16S, RNA 18S, amino acid analysis, animal food, Article, bacterium colony, Bacteroidetes, basal metabolic rate, biodegradation, controlled study, DNA barcoding, feces analysis, Firmicutes, Fusobacteria, intestine flora, metabolism, Mexico, microb BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA ANIMAL (ZOOLOGÍA) BIOLOGÍA ANIMAL (ZOOLOGÍA)
Alejandra Miranda Carrazco Yendi Navarro-Noya Bram Govaerts Nele Verhulst Luc Dendooven (2022, [Artículo])
Plant-associated microorganisms that affect plant development, their composition, and their functionality are determined by the host, soil conditions, and agricultural practices. How agricultural practices affect the rhizosphere microbiome has been well studied, but less is known about how they might affect plant endophytes. In this study, the metagenomic DNA from the rhizosphere and endophyte communities of root and stem of maize plants was extracted and sequenced with the “diversity arrays technology sequencing,” while the bacterial community and functionality (organized by subsystems from general to specific functions) were investigated in crops cultivated with or without tillage and with or without N fertilizer application. Tillage had a small significant effect on the bacterial community in the rhizosphere, but N fertilizer had a highly significant effect on the roots, but not on the rhizosphere or stem. The relative abundance of many bacterial species was significantly different in the roots and stem of fertilized maize plants, but not in the unfertilized ones. The abundance of N cycle genes was affected by N fertilization application, most accentuated in the roots. How these changes in bacterial composition and N genes composition might affect plant development or crop yields has still to be unraveled.
Bacterial Community Structure DArT-Seq Bacterial Community Functionality Genes Involved in N Cycling CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURAL PRACTICES MAIZE RHIZOSPHERE STEMS NITROGEN FERTILIZERS
Spurthi Nayak Polavarapu Kavi Kishor Rajeev Varshney (2010, [Artículo])
Simple Sequence Repeats Mapping Population Translational Studies CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ANCHORS CHICKPEAS CICER ARIETINUM GENETIC MAPS GENETIC MARKERS MEDICAGO MEDICAGO TRUNCATULA MICROSATELLITES SINGLE NUCLEOTIDE POLYMORPHISM GENES