Búsqueda avanzada


Área de conocimiento




14 resultados, página 2 de 2

Cell carbon content and biomass assessments of dinoflagellates and diatoms in the oceanic ecosystem of the Southern Gulf of Mexico

LORENA PATRICIA LINACRE ROJAS (2021, [Objeto de congreso])

This study assessed the cell carbon content and biomass for genera of dinoflagellates and diatoms in the oceanic ecosystem of the Southern Gulf of Mexico. Carbon content estimates were based on biovolume calculations derived from linear dimension measurements of individual cells and the approximate geometric body shape of each genus. Then, biomass assessments were performed for both groups in two gulf regions (Perdido and Coatzacoalcos) using these carbon content factors and cell abundances. After four seasonal cruises, 11,817 cells of dinoflagellates and 3,412 cells of diatoms were analyzed. Diverse body shapes and cell sizes were observed among 46 dinoflagellate genera and 37 diatom genera. Nano-cells of dinoflagellates (68% <20 μm) and micro-cells of diatoms (77% 20–200 μm, mostly 50–75 μm) were predominant. According to this cell-size structure, on average, diatoms contained 40% more carbon per cell than dinoflagellates. Contrasting carbon content estimates were observed within the genera of both microalgae. Large carbon averages (>10,000 pg C cell-1) were attributed to Gonyaulacal and some occasional genera of dinoflagellates (e.g., Pyrocystis and Noctiluca) and centric diatoms. In contrast, values up to 3 orders of magnitude lower were found for Peridinial and Gymnodinial dinoflagellates and pennate diatoms. Based on these carbon content estimates, which can be considered representative for most of this oceanic ecosystem, seasonal and regional differences were found in the biomass assessments conducted for these functional groups. Overall, dinoflagellates (mostly low-carbon Gymnodinales) had larger depth-integrated biomass than diatoms (mainly rich-carbon centric forms) within the euphotic zone. An exception to it was the late-summer cruise at the Coatzacoalcos region when a surface bloom of centric diatoms was observed in stations influenced by river runoff. This work contributes useful reference information for future ecological studies and models for understanding the biogeochemical functioning of this open-ocean ecosystem. © 2021 Linacre et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Carbon, biomass, Oceanic ecosystem, Southern Gulf of Mexico, Mexico CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO OCEANOGRAFÍA OCEANOGRAFÍA

Assessing the Response of Nematode Communities to Climate Change-Driven Warming: A Microcosm Experiment

RUTH GINGOLD WERMUTH (2013, [Artículo])

Biodiversity has diminished over the past decades with climate change being among the main responsible factors. One consequence of climate change is the increase in sea surface temperature, which, together with long exposure periods in intertidal areas, may exceed the tolerance level of benthic organisms. Benthic communities may suffer structural changes due to the loss of species or functional groups, putting ecological services at risk. In sandy beaches, free-living marine nematodes usually are the most abundant and diverse group of intertidal meiofauna, playing an important role in the benthic food web. While apparently many functionally similar nematode species co-exist temporally and spatially, experimental results on selected bacterivore species suggest no functional overlap, but rather an idiosyncratic contribution to ecosystem functioning. However, we hypothesize that functional redundancy is more likely to observe when taking into account the entire diversity of natural assemblages. We conducted a microcosm experiment with two natural communities to assess their stress response to elevated temperature. The two communities differed in diversity (high [HD] vs. low [LD]) and environmental origin (harsh vs. moderate conditions). We assessed their stress resistance to the experimental treatment in terms of species and diversity changes, and their function in terms of abundance, biomass, and trophic diversity. According to the Insurance Hypothesis, we hypothesized that the HD community would cope better with the stressful treatment due to species functional overlap, whereas the LD community functioning would benefit from species better adapted to harsh conditions. Our results indicate no evidence of functional redundancy in the studied nematofaunal communities. The species loss was more prominent and size specific in the HD; large predators and omnivores were lost, which may have important consequences for the benthic food web. Yet, we found evidence for alternative diversity-ecosystem functioning relationships, such as the Rivets and the Idiosyncrasy Model. © 2013 Gingold et al.

aquaculture, article, bacterivore, benthos, biodiversity, biomass, climate, community dynamics, controlled study, ecosystem, environmental temperature, microcosm, nematode, nonhuman, population abundance, species diversity, species richness, taxonomy CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO OCEANOGRAFÍA OCEANOGRAFÍA

Do marine reserves increase prey for California sea lions and Pacific harbor seals?

ALEJANDRO ARIAS DEL RAZO (2019, [Artículo])

Community marine reserves are geographical areas closed to fishing activities, implemented and enforced by the same fishermen that fish around them. Their main objective is to recover commercial stocks of fish and invertebrates. While marine reserves have proven successful in many parts of the world, their success near important marine predator colonies, such as the California sea lion (Zalophus californianus) and the Pacific harbor seal (Phoca vitulina richardii), is yet to be analyzed. In response to the concerns expressed by local fishermen about the impact of the presence of pinnipeds on their communities’ marine reserves, we conducted underwater surveys around four islands in the Pacific west of the Baja California Peninsula: two without reserves (Todos Santos and San Roque); one with a recently established reserve (San Jeronimo); and, a fourth with reserves established eight years ago (Natividad). All these islands are subject to similar rates of exploitation by fishing cooperatives with exclusive rights. We estimated fish biomass and biodiversity in the seas around the islands, applying filters for potential California sea lion and harbor seal prey using known species from the literature. Generalized linear mixed models revealed that the age of the reserve has a significant positive effect on fish biomass, while the site (inside or outside of the reserve) did not, with a similar result found for the biomass of the prey of the California sea lion. Fish biodiversity was also higher around Natividad Island, while invertebrate biodiversity was higher around San Roque. These findings indicate that marine reserves increase overall fish diversity and biomass, despite the presence of top predators, even increasing the numbers of their potential prey. Community marine reserves may help to improve the resilience of marine mammals to climate-driven phenomena and maintain a healthy marine ecosystem for the benefit of both pinnipeds and fishermen. © 2019 Arias-Del-Razo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Article, biodiversity, biomass, climate change, ecosystem resilience, environmental exploitation, fish stock, fishing, marine environment, marine invertebrate, nonhuman, Phoca vitulina, Pinnipedia, prey searching, Zalophus californianus, animal, biom BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA ANIMAL (ZOOLOGÍA) BIOLOGÍA ANIMAL (ZOOLOGÍA)

Protein retention assessment of four levels of poultry by-product substitution of fishmeal in rainbow trout (Oncorhynchus mykiss) diets using stable isotopes of nitrogen (δ15N) as natural tracers

DANIEL BADILLO ZAPATA (2014, [Artículo])

This is second part from an experiment where the nitrogen retention of poultry by-product meal (PBM) compared to fishmeal (FM) was evaluated using traditional indices. Here a quantitative method using stable isotope ratios of nitrogen (δ15N values) as natural tracers of nitrogen incorporation into fish biomass is assessed. Juvenile rainbow trout (Oncorhynchus mykiss) were fed for 80 days on isotopically distinct diets in which 0, 33, 66 and 100% of FM as main protein source was replaced by PBM. The diets were isonitrogenous, isolipidic and similar in gross energy content. Fish in all treatments reached isotopic equilibrium by the end of the experiment. Two-source isotope mixing models that incorporated the isotopic composition of FM and PBM as well as that of formulated feeds, empirically derived trophic discrimination factors and the isotopic composition of fish that had reached isotopic equilibrium to the diets were used to obtain a quantitative estimate of the retention of each source of nitrogen. Fish fed the diets with 33 and 66% replacement of FM by PBM retained poultry by-product meal roughly in proportion to its level of inclusion in the diets, whereas no differences were detected in the protein efficiency ratio. Coupled with the similar biomass gain of fishes fed the different diets, our results support the inclusion of PBM as replacement for fishmeal in aquaculture feeds. A re-feeding experiment in which all fish were fed a diet of 100% FM for 28 days indicated isotopic turnover occurred very fast, providing further support for the potential of isotopic ratios as tracers of the retention of specific protein sources into fish tissues. Stable isotope analysis is a useful tool for studies that seek to obtain quantitative estimates of the retention of different protein sources. © 2014 Badillo et al.

nitrogen 15, nitrogen, protein intake, animal behavior, animal experiment, animal food, animal tissue, aquaculture, Article, biomass, controlled study, energy metabolism, food composition, juvenile animal, nonhuman, poultry by product meal, protein a CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO OCEANOGRAFÍA OCEANOGRAFÍA