Búsqueda avanzada


Área de conocimiento




55 resultados, página 6 de 6

Contratos inteligentes para la gestión de datos de sensado móvil y vestible para aplicaciones en salud

Smart contracts for mobile and wearable sensing data management for health applications

José Ricardo Cedeño García (2023, [Tesis de maestría])

El aumento en la producción de datos derivado de la adopción de tecnologías móviles y de IoT está revolucionando la salud, pero también plantea importantes retos éticos y de privacidad. Los recientes avances en el aprendizaje automático han resaltado la importancia de recopilar y etiquetar datos correctamente, en especial para fines críticos, como el desarrollo de aplicaciones para cuidados médicos. La recopilación de datos médicos para tareas de aprendizaje automático presenta limitaciones en cuanto a la cantidad, variedad y calidad de las fuentes disponibles. Una forma de abordar este dilema es el uso de Blockchain para la recopilación y el uso de datos de pacientes. El anonimato de una red centralizada permite proteger la identidad del paciente. La estructura formada por nodos permite que la información esté siempre disponible y no dependa de un servidor principal. La inmutabilidad de los registros en la cadena garantiza la trazabilidad inequívoca del flujo de los datos del paciente. Por último, los mecanismos de consenso y recompensa de la red podrían motivar a nuevos usuarios a participar del sensado activo. Presentamos TRHEAD, una arquitectura de referencia basada en la Blockchain para recopilar datos sanitarios, firmar consentimientos, anotar datos y obtener crédito por los mismos, permitiendo a los usuarios rastrear el uso de sus datos, a los científicos rastrear su procedencia y proteger al mismo tiempo la privacidad de los pacientes. Exponemos dos implementaciones de nuestra arquitectura aplicadas a distintas campañas de sensado para comprobar su viabilidad, así como los resultados de su aplicación en estos escenarios y las conclusiones que desprendieron de su análisis. Dado que uno de los objetivos principales de TRHEAD es la recopilación de datos mediante sensado activo para el entrenamiento legal/consciente de modelos de aprendizaje automático, se realizó el entrenamiento de un modelo con los datos obtenidos de la campaña de sensado correspondiente a imágenes de rostros humanos, con el fin de detectar estados de ánimo. Finalmente se discute el papel de TRHEAD en el aseguramiento del trato justo y consciente de la información de los pacientes y el camino por recorrer en el perfeccionamiento de la arquitectura.

The increase in data production resulting from the adoption of mobile and IoT technologies is revolutionizing healthcare, but it also poses significant ethical and privacy challenges. Recent advances in machine learning have highlighted the importance of collecting and labeling data correctly, especially for critical purposes such as deploying healthcare software. Collecting medical data for machine learning tasks presents limitations in terms of the quantity, variety, and quality of available sources. One way to address this dilemma is the use of Blockchain for the collection and use of patient data. The anonymity of a centralized network allows the patient’s identity to be protected. The structure formed by nodes allows information to be always available and not dependent on a main server. The immutability of the records in the chain guarantees the unequivocal traceability of the flow of patient data. Finally, the network’s consensus and reward mechanisms could motivate new users to participate in active sensing. We present TRHEAD, a Blockchain-based reference architecture for collecting healthcare data, signing consents, annotating data and getting credit for it, allowing users to track the use of their data, scientists to track its provenance while protecting patients privacy. We present two implementations of our architecture applied to different sensing campaigns to test their feasibility, as well as the results of their application in these scenarios and the conclusions drawn from those results. Since one of the main objectives of TRHEAD is the collection of data through active sensing for the legal/conscious training of machine learning models, a model was trained with the data obtained from the sensing campaign corresponding to images of human faces, in order to detect moods. Finally, the role of TRHEAD in ensuring the fair and conscientious treatment of patient information and the road ahead in refining the architecture is discussed.

Contratos Inteligentes, Blockchain, Privacidad, Aprendizaje de Máquina Etico, Recopilación Consciente de Datos, Consentimiento, Arquitectura de Referencia Smart Contracts, Blockchain, Privacy, Ethical Machine Learning, Conscious Data Collection, Consent, Reference Architecture INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LOS ORDENADORES INTELIGENCIA ARTIFICIAL INTELIGENCIA ARTIFICIAL

Detección de eventos violentos en publicaciones de redes sociales

Detection of violent events in social media publications

Esteban Ponce León (2023, [Tesis de maestría])

En los últimos años, ha habido un interés creciente en el monitoreo de redes sociales para recopilar información y, en algunos casos, para examinar la ocurrencia de delitos. Sin embargo, gran parte de las investigaciones hasta ahora solo se han centrado en ciudades de EE. UU. o extranjeras, y por ende, en publicaciones y conjuntos de datos en inglés El objetivo principal de esta tesis es diseñar un método que permita la identificación de publicaciones de eventos violentos en español y en Twitter, utilizando información multimodal y técnicas de aumento de datos que mejoren el rendimiento de los modelos. Para esto, el trabajo de investigación se dividió en dos fases experimentales. La primera orientada a identificar publicaciones a partir de solo texto, explorando diferentes técnicas de aumento de datos para texto y modelos de aprendizaje máquina y profundo. En la segunda fase, se extendió el método propuesto para abordar la identificación en un contexto multimodal, es decir, considerando tanto los textos de los tweets como las imágenes compartidas que los acompañan. En este caso el método propuesto consideró utilizar descripciones textuales de las imágenes y abordar la problemática desde el dominio textual, además se hicieron 2 tipos de aumento de datos para cada tipo de información. La evaluación de los métodos se hizo utilizando las colecciones de la tarea de evaluación DA-VINCIS 2022 y 2023. Los resultados demostraron una mejora en el rendimiento de los modelos al considerar el uso de información multimodal y el uso de aumento de datos.

In recent years, there has been a growing interest in monitoring social networks to gather information and, in some cases, to examine the occurrence of crime. However, much of the research so far has only focused on US or foreign cities, and thus on English-language publications and data sets. The main objective of this thesis is to design a method that allows the identification of publications of violent events in Spanish and on Twitter, using multimodal information and data augmentation techniques that improve the performance of the models. For this, the research work was divided into two experimental phases. The first aimed at identifying publications from only text, exploring different data augmentation techniques for text and machine and deep learning models. In the second phase, the proposed method was extended to address identification in a multimodal context, that is, considering both the texts of the tweets and the shared images that accompany them. In this case, the proposed method considered using textual descriptions of the images and addressing the problem from the textual domain, in addition, 2 types of data augmentation were made for each type of information. The evaluation of the methods was done using the collections of the DA-VINCIS 2022 and 2023 evaluation task. The results demonstrated an improvement in the performance of the models when considering the use of multimodal information and the use of data augmentation.

Detección de Violencia, Redes Sociales, Aumento de Datos, Procesamiento del Lenguaje Natural, BERT, BETO, Descripción de Imágenes Violence Detection, Social Networks, Data Augmentation, Natural Language Processing, BERT, BETO, Image Captioning INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LOS ORDENADORES MODELOS CAUSALES MODELOS CAUSALES

Implementation of a Nickel-Electroless Coating in Heat Exchanger Pipes Considering the Problem of the Environmental Conditions ofthe Cooling Water Without Recirculation to Increase the Effectiveness Under Uncertainty

VICTOR MANUEL ZEZATTI FLORES GUSTAVO URQUIZA BELTRAN MIGUEL ANGEL BASURTO PENSADO LAURA LILIA CASTRO GOMEZ JUAN CARLOS GARCIA CASTREJON (2022, [Artículo])

This research is based on the operation tube heat exchangers, their use and problematic on hydroelectric power plants. It is based on the design heat exchanger tubes for industrial use, which took the parameters of operation, design, working fluids (air and water) and conditions to assemble a monitoring equipment at appropriate scale for the laboratory, with the necessary measurement instruments to analyze the behavior of heat energy transfer by means of thermocouples, the velocity of the air with a hot wire anemometer and the flow of water with a turbine flow meter, in pipes of different materials: copper, steel 1018 and stainless steel 316L, all in ideal conditions, and with this to found a comparative parameter with pipes of the same materials but under conditions of deterioration with the presence of forced oxidation and with the data mining and support vector machine can be minimized the corrosion problems in pipes.

INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS Data mining, Support Vector Machine, Pattern Recognition and Decision Support System, Heat exchangers

OPTIMIZING THE TRANSFER OF ENERGY IN A HEAT EXCHANGER MINIMIZING THE CORROSION PROBLEMS IN PIPES IN A HYDROELECTRIC POWER STATION USING DATA MINING AND SUPPORT VECTOR MACHINE

VICTOR MANUEL ZEZATTI FLORES GUSTAVO URQUIZA BELTRAN MIGUEL ANGEL BASURTO PENSADO LAURA LILIA CASTRO GOMEZ (2019, [Artículo])

This research is based on the operation tube heat exchangers, their use and problematic on hydroelectric power plants. It is based on the design heat exchanger tubes for industrial use, which took the parameters of operation, design, working fluids (air and water) and conditions to assemble a monitoring equipment at appropriate scale for the laboratory, with the necessary measurement instruments to analyze the behavior of heat energy transfer by means of thermocouples, the velocity of the air with a hot wire anemometer and the flow of water with a turbine flow meter, in pipes of different materials: copper, steel 1018 and stainless steel 316L, all in ideal conditions, and with this to found a comparative parameter with pipes of the same materials but under conditions of deterioration with the presence of forced oxidation and with the data mining and support vector machine can be minimized the corrosion problems in pipes.

INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS Data Mining, Support Vector Machine, Pattern Recognition and Decision Support System, heat exchangers.

Dipole-wind interactions under gap wind jet conditions in the Gulf of Tehuantepec, Mexico: A surface drifter and satellite database analysis

MAURO WILFRIDO SANTIAGO GARCIA (2019, [Artículo])

Gap wind jets (Tehuano winds) trigger supersquirts of colder water and mesoscale asymmetric dipoles in the Gulf of Tehuantepec (GT). However, the effects of successive gap wind jets on dipoles and their effects inside eddies have not yet been studied. Based on the wind fields, geostrophic currents, and surface drifter dispersion, this research documented three dipoles triggered and modified by Tehuano winds. Once a dipole develops, successive gap wind jets strengthen the vortices, and the anticyclonic eddy migrates southwestward while the cyclonic eddy is maintained on the east side of the GT. During the wind relaxation stage, the cyclonic eddy may propagate westward, but due to the subsequent re-intensification of the Tehuano winds, the vortex could break down, as was suggested by surface drifter dispersion pattern and geostrophic field data. The effect of the Tehuano winds was evaluating via eddy-Ekman pumping. Under Tehuano wind conditions, Ekman downwelling (upwelling) inside the anticyclonic (cyclonic) eddies may reach ~ -2.0 (0.5) m d-1 and decrease as the wind weakens. In the absence of Tehuano winds, Ekman downwelling inside the anticyclonic eddy was ~ 0.1 (-0.1) m d-1. The asymmetry of downwelling and upwelling inside eddies during Tehuano wind events may be associated with Tehuano wind forcing. © 2019 Santiago-García et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

article, dipole, leisure, Mexico, cold, ecosystem, factual database, geographic mapping, hurricane, Mexico, satellite imagery, season, water flow, wind, sea water, Cold Temperature, Cyclonic Storms, Databases, Factual, Ecosystem, Geographic Mapping, CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO OCEANOGRAFÍA OCEANOGRAFÍA